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- iii - 
INTRODUCTION 

During the  pas t  r epor t ing  period the  work contlnued i n  the  areas of  

photovol ta ic  and thermoelectr ic  processes.  

Addit ional  progress  was made i n  the  t h e o r e t i c a l  cha rac t e r i za t ion  of the  

p rope r t i e s  of graded heterogeneous t r a n s i t i o n s  between d i s s i m i l a r  semi- 

conductors. The t h e o r e t i c a l  p roper t ies  of such regions was examined with 

and without an appl ied magnetic f i e ld .  The work on the  cha rac t e r i za t ion  of 

t he  processes a t  the  absorpt ion edge of CdTe i s  complete. The complete 

t h e o r e t i c a l  and experimental  results of t h i s  work w i l l  be published i n  a 

doc tora l  t h e s i s  i n  January 1965. The inves t iga t ion  of the  f e a s i b i l i t y  of a 

mul t ip le  t r a n s i t i o n a l  process v i a  impurity levels i n  CdS continues with a 
view towards the f e a s i b i l i t y  of a mul t i - t r ans i t i ona l  s o l a r  cell.  

The work on the  experimental cha rac t e r i za t ion  of the  thermal and 

electrical  t r anspor t  p rope r t i e s  of ZnSb is e s s e n t i a l l y  complete. The 

p e r t i n e n t  c o e f f i c i e n t s  of the  galvanomagnetic t enso r  have been evaluated 

experimentally.  The thermal conductivity measurements are e s s e n t i a l l y  complete. 

With the  completion of the  work on ZnSb, the work w i l l  continue on the  

inves t iga t ion  of mixed c r y s t a l s  of (CdSb)x(ZnSb)l-xe 

the  t r anspor t  p rope r t i e s  of ZnSb a r e  e s s e n t i a l l y  complete. Two Ph.D degrees 

w i l l  be granted, one i n  January 1965 and the  o t h e r  i n  June 1965 on the  b a s i s  

of work supported i n  these areas .  

W o  doctora l  theses ,  one on the o p t i c a l  p rope r t i e s  of CdTe and one on 



CHAPTER 1 

GRADED ENERGY GAP HETEROSTRUCTURES 

1.0 Introduct ion 

Work s ince  the  las t  repor t  has centered on the t h e o r e t i c a l  ana lys i s  of 

Earlier r e s u l t s  of the  present  author'6) have been a graded-gap photoce l l .  

rev ised  and combined with work done during the  las t  r epor t ing  period, r e s u l t -  

ing  i n  a comprehensive t h e o r e t i c a l  t reatment  of graded-gap photodevices 

which is presented on the  following pages. 

1.1 Theore t ica l  Background 

The idea  f o r  a graded-energy-gap photoce l l  a rose  from a d e s i r e  f o r  a 

high-eff ic iency,  wide-spectral-response s o l a r  c e l l .  

i n  which the  bandgap i s  the  same throughout the  device, photons with energy 

below the  bandgap cont r ibu te  nothing t o  the  output power, whereas photons 

with energy g rea t e r  than the bandgap con t r ibu te  no more than photons wi th  

energy equal t o  the bandgap. 

would be avoided by a device with a range of bandgaps b u i l t  i n ,  so t h a t  t he  

low-energy photons are absorbed where the  bandgap i s  small, whereas the  high- 

energy photons are absorbed where the bandgap is  la rge .  

I n  a normal s o l a r  cel l ,  

It would seem t h a t  t h i s  source of i ne f f i c i ency  

To s e t  up a photovoltage i t  is necessary t o  sepa ra t e  the  excess carriers 

produced by the  photons. I n  a normal photoce l l  t h i s  involves c a r r i e r  motion 

by d i f fus ion .  

e l e c t r i c "  f i e l d s  e n t e r  i n t o  the charge separa t ion ,  

f i e l d s  are propor t iona l  t o  the  gradients  of the  r e spec t ive  band edges. 

I n  a graded-gap photocel l ,  as w i l l  be shown l a t e r ,  "quasi- 

These "quasi-electr ic"  
(1) 

The f i r s t  problemwhich comes up i s  the  cha rac t e r i za t ion  of such a 

device.  

conf igura t ion  he suggested i s  shown i n  Fig,  1. This l e c t u r e  has not  been 

published, and the  author  is g ra t e fu l  t o  Professor  Bruce Wedlock f o r  making 

h i s  p r i v a t e  notes  ava i l ab le  t o  him. 

This was discussed b r i e f l y  by Aigrain(2)  i n  a seminar a t  M.I.T. The 

 tau^'^) has considered the problem of s e t t i n g  up a p o t e n t i a l  between 

the  faces  of a graded-gap photocel l  i n  the  absence of a magnetic f i e l d .  

He  considers  an i l lumina ted  semiconductor region i n  which the  bandgap changes 

from E t o  E bu t  which i s  otherwise homogeneous. The excess c a r r i e r  

concent ra t ion  is assumed t o  be  uniform i n s i d e  the  i l luminated region and 

zero ou t s ide  Tauc uses i r r e v e r s i b l e  thermodynamics and the  "Quasi-Fermi 

1 eve 1s 'I o f Shock ley 'I5) t o  der ive  an expression f o r  the  open c i r c u i t  vol tage.  

G 1  G2 '  



. 
For a s t rong ly  p-type sample  wi th  a uniform equi l ibr ium ho le  concent ra t ion  

h i s  expression y i e l d s  
PO , 

where An i s  the  excess carrier dens i ty ,  E the  energy gap, and v t he  mobil i ty .  G 
A s i m i l a r  expression holds f o r  a s t rongly  n-type sample. 

Tauc considered only the  open-circui t  case and d id  no t  c a l c u l a t e  any 

Sega l l  and Pe l l (3 )  used the  open c i r c u i t  vo l t age  expression of Tauc as 
I-V c h a r a c t e r i s  t i c s  o r  e f f i c i e n c i e s .  

a s t a r t i n g  po in t  i n  a b r i e f  "exploratory" i n v e s t i g a t i o n  of t he  p o t e n t i a l i t i e s  

of a graded-gap photocel l .  

gap were assumed t o  be constant .  Uniform doping w a s  assumed. 

sho r t - c i r cu i t  cur ren t ,  assume ohmic behavior ,  and de r ive  an expression f o r  

e f f i c i ency ;  using the  p rope r t i e s  of a material l i k e  GaAs and a doping l e v e l  

of d7 ~ m - ~ ,  they ob ta in  an e f f i c i e n c y  of about 2% i n  sun l igh t .  

Ge-Si a l l o y  cel l ,  they ob ta in  an e f f i c i e n c y  of 3% i n  sun l igh t .  

Mob i l i t i e s  and o t h e r  q u a n t i t i e s  bes ides  the  energy 

They c a l c u l a t e  

For a 

Sega l l  and P e l l  d i sp lay  a very good phys ica l  understanding of the  

processes  i n  and problems of a graded-gap device.  However, i t  i s  hard  t o  

c r i t i c i z e  o r  comment on t h e i r  paper because many of t h e i r  r e s u l t s  are 

s t a t e d  without  proof o r  der ived from phys ica l  reasoning. It so happens 

t h a t  t h e i r  r e s u l t s  agree wi th  the  more d e t a i l e d  analyses  t o  be discussed 

below, and i n  r e t rospec t  it is i n t e r e s t i n g  t o  see t h a t  they can be  "derived1' 

by such simple techniques b u t  by t h e i r  own admission, i t  i s  no t  meant t o  be  

a r igorous discussion.  

Before leaving t h i s  paper,  i t  may be  appropr i a t e  t o  po in t  out t h a t  t h e  

doping l e v e l  of 1017 cm-3 used by Sega l l  and P e l l  is determined by present-  

day GaAs mater ia l  technology; t he  i n t r i n s i c  concent ra t ion  of GaAs a t  room 
7 -3 temperature is  about 10 c m  . Now, the  open-circui t  vo l tage  and thus the  

e f f i c i e n c y  are inverse ly  propor t iona l  t o  the  dark c a r r i e r  concentrat ion,  a t  

least  u n t i l  t h e  open-circui t  vo l tage  s a t u r a t e s .  

level t o  10 
Thus a decrease i n  doping 

16 -3 cm would inc rease  the e f f i c i e n c y  i n  s u n l i g h t  t o  20%. 

A more extensive t reatment  of a graded-gap pho toce l l  without  a magnetic 

f i e l d  i s  presented by Emtage. 

equal  t o  the  gradients  of s u i t a b l y  defined pseudo-electrochemical p o t e n t i a l s ,  

H e  s tar ts  by s e t t i n g  h i s  p a r t i a l  cu r ren t s  

L 



Emtage states without the  "quasi-Fermi levels ' '  introduced by Shockley e (15) 

proof t h a t  I' i t  i s  e a s i l y  v e r i f i e d  e i t h e r  from the  Boltzmana equat ion o r  

from thermodynamic arguments t h a t  these forms hold even when t h e  band gap 

and e f f e c t i v e  masses vary". One supposes t h a t  he is r e ly ing  here  p a r t i a l l y  

on the  r e s u l t s  of Tauc, who did use "thermodynamic arguments". 

These cur ren t  equations a r e  combined with Poisson's equation and with 

the cont inui ty  equation; the  pseudo-electrochemical p o t e n t i a l s  a r e  then 

combined i n t o  two new dimensionless q u a n t i t i e s  which allow Emtage t o  reduce 

the  e n t i r e  problem t o  a p a i r  of simultaneous nonl inear  second order  

d i f f e r e n t i a l  equations which, b y  h i s  own admission, "cannot be solved i n  

t h e i r  en t i r e ty . "  Emtage then makes a number of assumptions ( t o  be dis- 

cussed s h o r t l y )  and goes on t o  ca l cu la t e  the  I-V c h a r a c t e r i s t i c s  of a cell  

combining a p-n junc t ion  and an energy-gap g rad ien t  normal t o  the  junct ion.  

Using numbers f o r  a GaAs-InAs a l l o y  system and i l lumina t ion  having a uniform 

spectrum extending between the g rea t e s t  and least bandgaps only, he cal- 

culates an e f f i c i ency  of 32 f o r  sunl ight  i n t e n s i t y  and a maximum of 43% 

f o r  an i n t e n s i t y  2000 times g rea t e r  than sunl ight .  

Several  months a f t e r  t he  publ ica t ion  of t he  papers by Sega l l  and Pe l1  * 
and by Emtage, A l m a s i  presented an independent ana lys i s  of a graded-gap 

cel l  operat ing with a magnetic f i e l d  i n  the  o r i g i n a l  PEM configurat ion 

suggested by Aigrain. This work w i l l  be discussed i n  d e t a i l  later,  In  
t h i s  work, the  present  author chose t o  s tar t  with the  Boltzmann equation as  

a more phys ica l ly  motivated treatment than the  quasi-Fermi l e v e l  approach. 

As was noted a t  the  t i m e ,  t he  Boltzmann equation approach does indeed bear  

out  the  v a l i d i t y  of Emtage's p a r t i a l  cur ren t  equat ions f o r  t he  inhomogeneous 

semiconductor case. 

Having derived the  par t ia l -cur ren t  equations by d i f f e r e n t  means, t he  

two analyses  d i f f e r  c h i e f l y  i n  t he i r  assumptions and i n  the  s t ages  a t  

which the  assumptions are made, although of course Emtage does not  include 

a magnetic f i e l d  i n  h i s  treatment.  Both papers combine the  p a r t i a l  cur ren t  

equat ions with Poisson's equation and with the  con t inu i ty  equation and 

eventua l ly  come out  wi th  expressions f o r  q u a n t i t i e s  of i n t e r e s t  such as 

open-circui t  vol tages  and shor t - c i r cu i t  cur ren ts .  

*Reference 6, the  author 's  M,S. t hes i s ,  henceforth abbreviated M.S. 



. 

It i s  t r u e  tha t  Emtage's approach has a good dea l  of gene ra l i t y ,  bu t  

i t  is the  present  au thor ' s  personal  opinion t h a t  the  mathematical complexity 

tends t o  obscure the physical  processes involved. For example, the  importance 

of excess c a r r i e r s  and the  excess carrier d i s t r i b u t i o n  i n  understanding s e m i -  

conductor device ac t ion  has become increas ingly  apparent i n  recent  years ,  and 

y e t  the  ac t ion  of the  excess c a r r i e r s  i n  the  var ious cases considered by 

Emtage i s  a l l  bu t  l o s t  i n  the  dimensionless q u a n t i t i e s  with which he i s  deal- 

ing.  Excess c a r r i e r s  are ba re ly  even mentioned. 

As  a more important example, Emtage is  eventua l ly  forced t o  assume t h a t  

the  change i n  bandgap i n  an e x t r i n s i c  Debye length is  small compared t o  kT 

i n  order  t o  so lve  h i s  system of equat ions.  

t h i s  is equivalent t o  assuming quas i -neut ra l i ty  and can be  done much e a r l i e r  

i n  the  ana lys i s  with the  ' ' safety check" of self-consis tency.  

s ign i f i cance  of t h i s  assumption is not  a t  a l l  apparent from Emtage's ana lys i s .  

As  pointed out  by Almasi(6) M.S., 

The physical  

As a t h i r d  example, Almasi showed i n  M,S. t h a t  the  d i f f u s i o n  cu r ren t  due 

t o  the excess c a r r i e r s  i n  the  graded region can be s a f e l y  neglected i n  most 

cases when compared t o  the  d r i f t  cur ren t .  

Emtage's ana lys i s  considerably.  

Real iz ing t h i s  would have s impl i f i ed  

Emtage's treatment of the  high i l l umina t ion  case i s  more d e t a i l e d  than 

t h a t  of Tauc o r  the present  author.  

open-circuit  vol tage is s u b s t a n t i a l l y  

and i f  i t  can be assumed t h a t  the  f i e l d s  i n  the  x- and y d i r ec t ions  a r e  

simply r e l a t e d  by the  H a l l  angle,  t h a t  is, t h a t  E = (BunIeff &, then the  

open-circuit  voltage which would be  derived on the  b a s i s  of M.S. a l s o  agrees 

s u b s t a n t i a l l y  with Emtage's r e s u l t .  

However, Emtage's expression f o r  the  

the  same as  t h a t  derived by Tauc, 
* 

Y 

** 
A t  p resent ,  Emtage's paper i s  the  only published work which considers  

the  I-V c h a r a c t e r i s t i c s  of a graded-gap device wi th  cu r ren t  flowing along 

the  d i r e c t i o n  of the  gap gradien t .  (La ter  on i n  t h i s  paper,  the  developments 

i n  the  present  author 's  M.S. t h e s i s  w i l l  be appl ied  t o  t h i s  s i t u a t i o n . )  

Tauc has not  done t h i s  a t  a l l ,  and the  present au thor ' s  M.S. t h e s i s  considered 

only n e t  cur ren t  flowing perpendicular  t o  the  gap gradien t .  

*Expect f o r  some "end cor rec t ions" ,  which Emtage admits are small .  
**Some uncertainty i s  caused by the f a c t  t h a t  Emtage has  assumed constant  
mob i l i t i e s  whereas the present  author  uses a c e r t a i n  average of a 
l i n e a r l y  varying mobil i ty .  

Emtage allowed 



f o r  departures  from ohmic behavior and found these departures  t o  be small. 

On o the r  counts, Emtage's assumptions are more r e s t r i c t i v e  than e i t h e r  

those of Tauc o r  t he  present  author. 

Tauc discusses  varying mob i l i t i e s  very b r i e f l y ;  t he  present  author  incorporated 

a l i n e a r l y  varying mobil i ty  i n to  h i s  model. 

masses, although he admits t h a t  both t h i s  and the  constant  mob i l i t i e s  are 
very poor assumptions. Tauc s t a t e s  (without proof) t h a t  such e f f e c t s  are 

Emtage assumes constant  mobi l i t i es ;  

Emtage assumes cons tan t  e f f e c t i v e  

usual ly  very small." The present  author  assumed e f f e c t i v e  masses propor t iona l  11 

* 
t o  t he  energy gap 

small  - '' 
and showed under what condi t ions the  e f f e c t s  were ''very 

i n  a paper published ( 2 5 )  This las t  poin t  was a l s o  considered by Verie 

more than two years  a f t e r  M.S. Verie a l s o  made the  assumption, based on 

k * p  theory,  t h a t  the  e f f e c t i v e  masses were propor t iona l  t o  the  bandgap, and 

came t o  the  same conclusions as the present  author ,  namely, t h a t  band-gap 

v a r i a t i o n s  and e f f e c t i v e  mass va r i a t ion  give rise t o  quas i - e l ec t r i a  f i e l d s  

of opposi te  s igns ,  bu t  t h a t  the band-gap v a r i a t i o n  w i l l  be the  dominant 

e f f e c t  as long as EG >> kT. 

i n  t he  presence of a magnetic f i e l d  appeared i n  a paper by F o r t i n i  and 

I n  1963, an ana lys i s  of pho toe lec t r i c  e f f e c t s  i n  a graded-gap region 

S aint-Martin . Constant mobi l i t i es  were assumed, and the  b&edge 

g rad ien t s  were simply i n s e r t e d  i n t o  the  cur ren t  equations wrthout any 

der iva t ion .  The ana lys i s  is v a l i d  f o r  small Hall angles and low i l lumina t ion .  

Quas i -neut ra l i ty  w a s  assumed, bu t  the condi t ions necessary f o r  t h i s  assump- 

t i o n  t o  hold were not  discussed. No reference l e v e l  was def ined f o r  the 

energy l e v e l s  under discussion.  

These omissions a s ide ,  however, the  work which is  done i n  t h i s  paper 

i s  done wel l .  The normal PEM e f f e c t  is considered alongside the  PEM e f f e c t  

a r i s i n g  from the  gap gradien t ,  and the  authors  

of t h e  new mobil i ty  c o e f f i c i e n t  

po in t  out the importance 

n + p  
n/wp + P / L ~  1.1' = 

*An assumption suggested by k * p  per turba t ion  
experimental ly  fo r  the  HgTe-CdTe system. (16) 

theory and borne out  
See Appendix A, P. 39. 



which is  assoc ia ted  with the  gap gradien t  and which i s  t o  be compared with 

the  normal ambipolar mobil i ty  c o e f f i c i e n t  

n - p  u =  n/u P + p/L n 

* 
This c o e f f i c i e n t  IJ' i s  the same as the  quan t i ty  u defined i n  M.S. 

The shor t - c i r cu i t  PEM due t o  the  gap gradien t  i s  ca l cu la t ed  f o r  * 
a r b i t r a r y  su r face  recombination v e l o c i t i e s  a t  the  f r o n t  and back faces  

and f o r  two d i f f e r e n t  excess c a r r i e r  generat ion functions: a uniform and 

cons tan t  generation r a t e  and a generat ion rate loca l ized  near the  i l luminated 

f r on t face.  

This is  as f a r  as the  ana lys i s  i s  ca r r i ed ;  t he re  i s  no d iscuss ion  of 

the  power output of such a device,  and no ca l cu la t ion  of e f f i c i ency .  The 

experimental  work ( t o  be discussed l a t e r  i n  the  sec t ion  on experimental  

background) consis ted of s e t t i n g  up a s m a l l  energy gap gradien t  by s t r a i n i n g  

a germanium c r y s t a l ,  and then measuring the  PEM vol tage  as a func t ion  of 

s t r a i n .  There i s  no discussion of what material parameter values a r e  des i r ab le  

f o r  e f f i c i e n t  device operat ion.  The main purpose of the  paper seems t o  be 

t o  e s t a b l i s h  the  f a c t  t h a t  a gap gradien t  w i l l  con t r ibu te  t o  the  PEM e f f e c t .  

This completes the  summary and comparison of e x i s t i n g  analyses  of graded- 

gap devices;  the  next  few sec t ions  are devoted t o  a more d e t a i l e d  consider- 

a t i o n  of a s impl i f ied  vers ion of the  ana lys i s  i n  M.S. 

1 . 2  Analysis of a Graded-Gap Device: General 

The t h e o r e t i c a l  p a r t  of t he  au thor ' s  t h e s i s ( 6 )  der ived an ana lys i s  

app l i cab le  t o  the problem of the  graded-gap device.  The graded region was 

t r e a t e d  using three b a s i c  assumptions: 

(1) "hat the e f f e c t i v e  mass approach could be used and t h a t  the  e f f e c t  

of a band-edge gradien t  w a s  equiva len t  t o  t h a t  of an e l e c t r i c  f i e l d  

ac t ing  on t h e  c a r r i e r s  i n  the  band under cons idera t ion .  

(2) That Boltzmann t r anspor t  theory could be used t o  der ive  the  equations 

of motion of c a r r i e r s  i n  inhomogeneous regions moving under the  

inf luence  of forces  such as  discussed above. 

*In M.S., the  equations f o r  a r b i t r a r y  su r face  recombination v e l o c i t i e s  were 
set up and the  so lu t ions  were sketched ou t ,  b u t  not c a r r i e d  t o  completion. 



(3) That the  e l e c t r o s t a t i c  po ten t i a l  d i s t r i b u t i o n  could be found by 

assuming quas i -neut ra l i ty  throughout the  graded region. 

The l imi t a t ions  on the  v a l i d i t y  of these  assumptions are examined i n  

Appendix A of t h i s  paper (p. 39) 

As shown i n  Appendix A, t h e  main r e s u l t  of t he  e f f e c t i v e  mass treatment 

is  t h a t  the  cur ren t  carriers can be  t r e a t e d  as f r e e  p a r t i c l e s  with an e f f e c t i v e  

mass m* appropriate  t o  the  energy band under cons idera t ion ,  and t h a t  t he  

fo rce  ac t ing  on them [ i n  t h e  absence of a magnetic f i e l d ]  is given by 

r L!!t+L 2- dE Ti2 - k2 -- 1 dmj 
2m m dx e e F e - - e L -  dx e dx 

is the  [ f o r  e l e c t r o n s ]  where I$ is  the  e l e c t r o s t a t i c  p o t e n t i a l  and dx 
conduction band-edge gradient .  For holes  i n  the  valence band, t h e  r e s u l t  

i s  

dEC 

* 

These are then the  fo rce  terms t o  be i n s e r t e d  i n t o  t h e  Boltzmann equat ion 

f o r  the d i s t r i b u t i o n  funct ion f ,  

The h e a r t  of t he  ana lys i s  which follows i s  contained i n  the  author 's  

M.S. t h e s i s , ( 6 )  and the  reader  i s  r e fe r r ed  t o  t h a t  paper f o r  d e t a i l s .  

ever ,  the  organiza t ion  of the analysis  presented he re  is d i f f e r e n t  and 

(hopeful ly)  clearer, and the  analysis  i t s e l f  is expanded t o  include f u r t h e r  

work by the  author ,  both on the  PEM graded gap device analyzed i n  M.S. 
and on graded-gap devices operating without a magnetic f i e l d .  

wi th  the work of o the r  authors  w i l l  be made where possible .  

The author 's  M.S. t h e s i s  t r ea t ed  the  t r anspor t  of c a r r i e r s  i n  a s e c t i o n  

How- 

Comparisons 

of inhomogeneous semiconductor by the  s tandard Boltzmann equation approach 

*The conduction band 
a f f i n i t y ; "  i t  is important t o  note t h a t  i t  is  a property of t he  material 
only,  and does not  depend on such th ings  as the  doping or excess c a r r i e r  
dens i ty .  
d i s t ance  x is f ixed.  

lower edge (Fig. 1)  is  a l s o  c a l l e d  the  "e lec t ron  

Thus Ec(x) i s  f ixed  once the  v a r i a t i o n  i n  composition wi th  
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descr ibed by Smith. (17) Only t h e  handling of t he  fo rce  term vas s l i g h t l y  

d i f f e r e n t  from t h a t  described in  the las t  sec t ion .  In s t ead  of tak ing  t h e  

f o r c e  expression r e s u l t i n g  from the e f f e c t i v e  mass treatment and i n s e r t i n g  

i t  d i r e c t l y  i n t o  t h e  Boltzmann equation, the au thor  took t h e  following 

a t t i t u d e :  Kromer has shown t h a t  such things as q u a s i - e l e c t r i c  f i e l d s  do 

exis t ;  i n s e r t  them i n t o  the  equations of motion as unknowns and see what 

form they must have from equilibrium cons idera t ions  a lone ,  without  going 

through any quantum mechanics. 

forward o r  clear a8 t he  one used in t h i s  paper, bu t  i t  is  s a t i s f y i n g  i n  t h a t  

i t  y ie ld8  the  same values f o r  t h e  "quas i - e l ec t r i c  f i e l d s "  as does t h e  

quan twmechan ica l  approach. 

This approach i s  no t  q u i t e  as s t r a i g h t -  

Using the  fo rce  term derived i n  Appendix A, t h e  Boltemann equation i n  

the  presefice of a magnetic f i e l d  B becomes 

dE 2 2 1  dm e u + C$.JL..] - - 4- VxB)*Vkf-TV*v f (1.2a) f = f + ~ / 6  e(-- dx dx m dx t e 0 

for  conduction band e l e c t r o n s  and 

f o r  valence band holes.  

t he  var ious  energy l eve l s .  

equa t ion  are i d e n t i c a l  t o  those out l ined  i n  the  au thor ' s  t h e s i s ,  and t h e  

r e s u l t i n g  equations of motion, t o  f i r s t  o rder  i n  magnetic f i e l d ,  are 

Figure 1 should be consulted f o r  t he  re ferences  on 

The s t eps  involved i n  so lv ing  t h e  Boltzmann 

f o r  e l e c t r o n s ,  and 
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(1.3b) 

* 
f o r  holes .  

made up t o  t h i s  point  are 

The q u a n t i t i e s  6 and y are def ined i n  Figure 1. The assumptions 

1) No temperature grad ien ts  

2) Non-degenerate material 

3) Uniform B-field i n  the  z-direct ion rn 

2 2  
45L fk2 + kv + kz) 4) Parabol ic ,  sphe r i ca l  bands, e.g., Ec = 

X - 

5)  Variat ion i n  the  x-direct ion only 
2 2  6)  T~ = T ~ ,  i . e . ,  H a l l  mobil i ty  equals  conduct ivi ty  mobil i ty  

7) ( B U ) ~  << 1 

Now s i n c e  n = Nc e -6 

C 
dN 

dx dx Nc dx 
- n - = - - - -  d6 dn n 

and equations (3) may be r e - w r i t t e n  

However, 

3 /2  Nc = const  x m e 

N = const  x 
V 

and i f  w e  assume, as discussed i n  Apendix A,  t h a t  the  e f f e c t i v e  masses a r e  

~~ 

*The quant i ty  (dEc/dx - e a+/ax - kT a6/ax) i s  exac t ly  equal  t o  the pseudo- 
e lectrochemical  p o t e n t i a l  g rad ien t  defined by Emtage. Thus i t  is  seen 
t h a t  f o r  B = 0, the Boltzmann equation does indeed bear  ou t  the  v a l i d i t y  
of the  Quasi  Fermi level approach used by Emtage, s i n c e  then the  present  
equations (3)  become i d e n t i c a l  with h i s  equat ions (4 ) .  [Emtage assumed 
uniform e f f e c t i v e  masses.] 
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1 dNc 1 % 3 1 dEG propor t iona l  t o  the  energy gap, then - - = - - - - - - 
Thus equations (4) may be re-written 

Nc dx Nv dx 2 EG dx 

(1.4a) 

dn 
) + kT p n z -  Jyn 

XP ax EG dx P YP 

dEC a - 4 - -  kT dEG 
J xn = n p n ( r - e  ax EG dx 

3+ 4-- kT dEG ) - kT pp % +  Bp J 

I n  equilibrium, n = no, J = J - J = 0; thus 
Im YP - Jxn XP 

- 0  e - ) + kT pn dx d% dnO kT dEG dE 
L - 4 - - -  

"0 'n ( dx EG dx dx 

I n  the  presence of excess c a r r i e r s  An = Ap, 

dAn 1 + k~ pn F kT dEG 4-- - A n p  - - e - - -  
dEC a 40 

Jxn n ( dx ax EG dx 

dnO 1 + k~ pn 
- - e - -  dEC a $0 4-- kT dEG 

4- "0 'XI ( dx ax EG dx 

But from equat ion (S ) ,  t he  last four terms of equat ion ( 6 )  add up t o  zero,  

so t h a t  the  cur ren ts  may be re-wri t ten 
* 

1 
Jyn I 

dhn 
J xn - e Anpnlzo  - e npn a/ax ($-I$~) + e Dn F - 

(1.7) 
dAn + Bp J - e ppp a/ax ($P$~)  - e D - P YP 

J = e Anp 
XP P xo P dx 

where we have defined 

*Note t h a t  the second terms i n  equation 7 is  the s tandard d r i f t  t e r m ,  
the  t h i r d  i s  the  s tandard d i f  fusion-of-excess-carriers term, and the  
fou r th  the  s tandard Hall e f f e c t  term. 
band-edge gradients .  

The f i r s t  term corresponds t o  the  
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dm d'o kT dNc 5 kT 
dx Nc dx 2 me dx 

- - -_ - - -  e l  e -  

p - -  kT d'o - -- 4kT dEG 
e dx eEG dx 

1 dEV d'o kT dNv 5 kT d% &:o = e  (r- e-+--+---  dx Nv dx 2 rn,, dx 

kT dEG + 4-- kT d'o 
e dx eEG dx 

I - - -  I 
I 

Note that€:, and€' are independent of the  l e v e l  of i n j e c t i o n .  

to f ind  t h e i r  ind iv idua l  values w e  must know $o ,  which involves so lv ing  

Poisson's equation. 

and w i l l  be done later. 

I n  order  xo 

However, t h i s  is not  necessary a t  t h i s  s t age  of ana lys i s ,  

The two other  q u a n t i t i e s  involved i n  t h i s  ana lys i s  are the  photo 

p o t e n t i a l  ( c$ -$~ )  and the  excess c a r r i e r  d i s t r i b u t i o n  An. 

t h a t  ( I$-$~)  i s  found from V * J  = 0, and t h a t  An is determined by the  cont inui ty  

equation 

It w i l l  be shown 

where g = g(x) is the  ex te rna l  rate of hole-electron p a i r  generat ion due t o  

photons and T~ i s  the  l i f e t i m e  of excess carriers. 

s i g h t  of the  f a c t ,  however, t h a t  i n  general  w e  have f i v e  equations f o r  the  

f i v e  unknowns An, Ap, Jm, J and +, namely, the  two equations 7 ,  two 

cont inui ty  equations l i k e  equation 9, and Poisson 's  equation, and t h a t  i n  

general  these  f ive  equations must be solved simultaneously.)  

(One should not  l o se  

XP' 

The condi t ion t h a t  V * J  - 0 reduces t o  

J = const 
X 

therefore ,  s ince  J + J = J 
x " x p  X' 
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(1.10) 

where w e  have defined 

= e b v n  + ppp) 

8 * BPn 

P = B"P 

n 

v kT D =--  e 

Now Jnx becomes 

The inc lus ion  of the  term J 

than those i n  M.S. 

makes these  expressions a l i t t l e  more general  
X 

M.S. t r e a t e d  only the  PEM case, f o r  which Jh 5 0; the re fo re  we proceed 

t o  f i n d  the  terminal  c h a r a c t e r i s t i c s  i n  the  y d i rec t ion ,  leaving the  d is -  

cussion of a device u t i l i z i n g  the  x-directed vol tage u n t i l  later. 

1.3 Analysis of a Graded-Gap PEM Device 

We def ine  
t 

I = I Jy dx, 
0 Y 

-JI 

and s i n c e  V*( = P k  

vary i n  the  y-direct ion,  w e  can a l so  def ine  

= 0, and the material proper t ies  are not  assumed t o  
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Recognizing t h a t  

a 
J = J + J = e(npn + p ~ ~ )  - (+-+o) + On Jxn - 0 J 

Y nY PY a Y  P XP 

* 
and r e a l i z i n g  tha t  i n  t h i s  case J = - J i t  is easy t o  show t h a t  xn XP ’ 

t V  t 
I = - 1 U f dx + 1 (0 + Qn)Jxn dx 

P / v  =o 0 0 Y 
Y 

(Equation 11) shows t h a t  t he  expression f o r  J a l s o  contains  V bu t  t h i s  

t e r m  e n t e r s  i n t o  t h e  expression for J 
Y 

i n  B ,  and I s  therefore  neglected.)  Then 

nx Y’ 
mu l t ip l i ed  by a second-order term 

V 

YSC 
I = - -  + I 

Y R i n t  
(1.12) 

where 

t 
= - 1 u(x)dx  1 1 

Rin  t d o  

YSC 

YSC P 

and the  s h o r t  c i r c u i t  cur ren t  I 

t 
I = I (0  + on)Jnx dx 

v P O  
Y 

(1.13) 

(1.14) 

Thus i t  i s  seen t h a t  t he  terminal  c h a r a c t e r i s t i c s  of the  device are those 

of a Norton equivalent  c i r c u i t ,  t h a t  is, an i n t e r n a l  r e s i s t a n c e  i n  p a r a l l e l  

with an Idea l  current  source.  The cur ren t  source depends on magnetic f i e l d  

and on Jnx. A l l  necessary information may thus be  obtained by t r e a t i n g  the  

s h o r t  c i r c u i t  case only. 

J under s h o r t  c i r c u i t  condi t ions (a/ay (+-+ ) = 0 . )  

The remaining problem is thus the  eva lua t ion  of 

nx 0 

*M.S. t h e s i s ( 6 )  p. 35 
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I n  the s h o r t  c i r c u i t  condition, Jnx can be w r i t t e n  

* * *  J = e p  & * A n + e D  dx nx 

where w e  have def ined 

n I* - €lX -;€:x 
b D  

D " + D  

kT n p  
e 

D* * - (1 +:) * I 
n P  P 

(1.15) 

Thus the  problem becomes t h a t  of f ind ing  E* and An f o r  t he  cases of i n t e r e s t .  

1.3.1 Finding the e f f e c t i v e  e lectr ic  f i e l d  &*: 
Using the  values  i n  equat ion 8, E* becomes 

kT dEG &* 3 - kT 'd60 + 9%) - 4- - (1 +;) e (dx p d x  eEG dx (1.16) 

It is tempting a t  t h i s  po in t  t o  go ahead, make t h e  approximations of i n t r i n s i c  
n o r  s t rong ly  doped material ( - = 1 o r  1 o r  >> 11, and come out  w i th  
P P P 

some compact r e s u l t s .  However, a l i t t l e  r e f l e c t i o n  w i l l  show t h a t  w e  are 
assuming t h a t  the  c a r r i e r  concentrations and thus the  values of 6 and Yo 

0 

are determined simply by the  doping. This is t r u e  only i f  Quasi-Neutral i ty  

can be  shown t o  hold. 

f o r  the  type of non-uniform semiconductors under cons idera t ion  here  are 

d iscussed  i n  some d e t a i l  i n  Appendix B. 

The conditions under which quas i -neut ra l i ty  holds  

The r e s u l t s  of Appendix B show t h a t  as long as Nc, Nv, EG/kT vary 

slowly i n  a Debye length,  then f o r  i n t r i n s i c  o r  uniformly s t rong ly  doped 

graded-gap regions,  t he  e l e c t r o s t a t i c  p o t e n t i a l  can be  found from 

(1.17) i s i n  h (@-a i) = 2 
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P -  kT 1 (Ec - EG/2 - EF - 7 1 kT In  Nc/NV) and i = - Nd"a 
n where (0 , gi 

where Nd = # of donors and N = d of acceptors  and complete i o n i z a l i o n  

of impur i t i e s  i s  assumed. 
a 

Once @ is  determined, 6 and y are a l s o  determined, s i n c e  

- @  Ec - Ef 
kT d =  

and 

& + y e -  EG 
kT * 

Now le t  us evaluate  &* f o r  the  cases  of i n t e r e s t .  For s t rong  p-type 

ma te r i a l  such tha t  151 >> 1 everywhere, equat ion 17 y i e l d s  . 
INd N a l  - In  = Ev - Ef 

NV 
@o kT (1.19) 

and 

INd - N a l  
V 

6 = -  E~ + In  
0 kT 

(1.20) 

the re fo re  

5 kT dme = - - - -  1 dEG kT ( -- 1 dNc + 1 dNv) ---- 
€:x e dx e Nc dx Nv dx 2 eme dx 

&p/+-- 5 kT - d% 
2 e% dx 

and 

11kT (1 - -1 E* I -- 1 dEG 

2EG e dx 

(1.18) 

V 

(1.21) 
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where the  e f f e c t i v e  masses have again been assumed propor t iona l  t o  t h e  energy 

gap. 
the assumption of non-degeneracy,&* may be  taken as constant  and equal t o  

the  gap gradien t .  

can be in t e rp re t ed  as saying t h a t  i f  the  hole  a f f i n i t y  does not  vary with 

pos i t i on  i n  t h i s  case, then no e l e c t r o s t a t i c  f i e l d  w i l l  be set up i n  

equi l ibr ium. 

* 
Since regions where EG 6 kT are already being neglected through 

If t he  va r i a t ions  i n  N are ignored, then equat ion 1 7  
V 

For a 

y i e l d s  

strong n-type material such t h a t  >> 1 everywhere, equation 15 

Nd - Na + In  .I Ec - Ef 

NC 
% kT 

Nd - N a 6 = - l n  
0 

C 

Nd - Na 
E -  + I n  N 

C 
YO kT 

theref  ore  

dm 5 k T -  e 
e 

&:x-- - 2 e m  dx 

px=- - 1 - dEG + E 1 dNc +--) 1 dNv +--- 5 kT d% 
e dx e (N C dx Nv dx 2 e% dx 

an 

&* .I - n 1 d E ~  - - ( ( 1 - - ) ;  11kT 
2EG p e dx 

(1.22) 

t h i s  r e s u l t  seems l e s s  s t range  where i t  is r ea l i zed  t h a t  f o r  t h i s  s t rong  

n-type case, II* = p/n p thus w e  may take 
P 

1 dEG ,*E.* = pp edx 

*See Appendix A. 
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whereas f o r  t he  p-type case ,  

- -  1 dEG 
P*&* - 'n e dx 

For i n t r i n s i c  ma te r i a l  (i = 0) ,  

and 

C 
N 1 

2 + - 1 n  - 1 EG 
6i 2 kT 

NV 

2 NV 

P -  - 

C 
N 

= -  1 - EG - - 1 n  1 - 
'i 2 kT 

c n = - - - k T  1 dEG 1- dNc +--  1 dNv 1 _--- 5 kT dme 

C ' P  
L o x  2e dx 2 [Nc dx Nv dx 

2 eme dx L o x  2e dx 2 LNc dx Nv dx -A 

dNc 1 dNj + 5 kT d% +- -  - -- 1 dEG + kT 1 
2 e% dx 

3kT 

P '  * ,"p 

' un*u P 

(1.24) 

f o r  the  1 dEG i f  pn >> p , as is  common. Thus the product P* E* is  up ; dx 
i n t r i n s i c  and n-type cases and pn; dEG/dx f o r  the  p-type case. 

(Equation (24)  may be in t e rp re t ed  as saying t h a t  no equi l ibr ium 

e l e c t r o s t a t i c  f i e l d  i s  set up i f  the  e l ec t ron  a f f i n i t y  and ho le  a f f i n i t y  

have the  same magnitude. ) 

P 1 

1.3.2 Finding the  excess carrier d i s t r i b u t i o n :  cons tan t  mob i l i t i e s  

The next  problem is  t h a t  of f ind ing  An(x). This is somewhat more 

involved. 

equat ion  ( 9), and i t  is  assumed t h a t  Jx = 0, the  equat ion f o r  An becomes 

When equat ion (15) f o r  Jnx i s  in se r t ed  i n t o  the  cont inui ty  
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i 

(1.25) 

v&- is the  d i f f u s i o n  length. where L = 

zero and t h e  volume, generation term were absent,  t h i s  would be t h e  equat ion 

f o r  t he  excess c a r r i e r  d i s t r i b u t i o n  i n  a normal, homogeneous PEM cell. 

It can be seen t h a t  i f & *  were 1 

Since P* (and thus D* and L) are  i n  genera l  functions of pos i t i on ,  t h i s  

Simplifying i s  i n  general  a non-constant c o e f f i c i e n t  d i f f e r e n t i a l  equation. 

assumptions must be made i n  order  t o  ob ta in  closed-form s o l u t i o n s .  

Our f i r s t  assumption w i l l  b e  t h a t  t he  mobi l i ty  is  constant.  This i s  a 
very poor assumption f o r  most ma te r i a l  systems; i n  CdTe-HgTe, f o r  inetance,  

t he  e l e c t r o n  mobi l i ty  can vary from 600 cm /v-sec i n  CdTe t o  20,000 c m  /v-sec 

i n  a HgTe-rich al loy.  

t he  e f f e c t s  of t he  gap gradien t .  

does inc lude  mobi l i ty  va r i a t ions .  

2 2 

However, i t  r e s u l t s  i n  a workable model which shows 

Another model w i l l  be der ived  later which 

"he i l l tmtinat ion spectrum assumed is  shown i n  Figure 5 .  It i s  assumed 

t h a t  the absorp t ion  i s  so s t rong  t h a t  a l l  t h e  photons of a given energy are 
absorbed a t  the  poin t  which has the appropr ia te  energy gap w i t h i n  a d i s t ance  

which i s  small compared t o  the width of t he  graded region. This assumption 

i s  taken t o  mean t h a t  t he  generation rats can be taken as cons tan t  through- 

out  t h e  e n t i r e  graded region and equal t o  q / t  cm-3 sec-'. 

* 

0 

E* is  a l s o  taken t o  be  constant,  s i n c e  we  are considering EG >> kT 

The s o l u t i o n  using these assumptions is ou t l ined  i n  t he  au thor ' s  M.S. 
everywhere. 

t h e s i s  s t a r t i n g  on page 40. The so lu t ion  takes t h e  form 

An = gT1 + e D* [Cle + c ~ ~ - ~ ~ I  rx 
E 

** 
where 

~ ~~ 

*In CdTe, t h i s  condi t ion  should be e a s i l y  achieved. 

(1.26) 

** 
Again, i t  can be seen t h a t  i f  e* = 0,  r = l / L  
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and C and C 1 2 
a t  x = 0 and x = t. 

An addi t iona l  assumption makes the  s o l u t i o n  easier and a l s o  throws more 

depend i n  a r a t h e r  complicated way on the  boundary condi t ions  

l i g h t  on the  processes involved. Although never e x p l i c i t l y  s t a t e d ,  one of 

the  reasons f o r  i n t e r e s t  i n  t h i s  device is the  p o s s i b i l i t y  t h a t  the  excess 

c a r r i e r s  move pr imari ly  by d r i f t  r a t h e r  than d i f fus ion .  This i n t u i t i v e  

f e e l i n g  w i l l  be  checked by neglec t ing  the  d i f f u s i o n  cur ren t  compared t o  the  

d r i f t  cu r ren t ,  and then checking the  assumption f o r  self-consis tency.  

I f  the  d i f fus ion  term i n  equation 15 f o r  Jxn is neglected,  the  equation 

f o r  An becomes 

= - g/u*€* . dAn An 
dx 
- -  

&*P*T1 
(1.27) 

It w i l l  be assumed t h a t  the  i l luminated su r face  is very c a r e f u l l y  prepared, 

so t h a t  the  sur face  recombination ve loc i ty  s t he re  is zero. A t  t he  back 

su r face ,  the  opposite approximation w i l l  be made, namely s - 00. This means 

t h a t  a l l  excess c a r r i e r s  which reach t h i s  su r f ace  recombine immediately, 

and t h a t  the  excess c a r r i e r  dens i ty  a t  the  back su r face  is zero. 

ma te r i a l ,  u* w i l l  be constant  i f  the  ind iv idua l  mob i l i t i e s  un and p are 

cons t a n t  . 

1 

2 

* 
I n  the  two spec ia l  cases of i n t r i n s i c  material and uniformly doped 

P 

Under these condi t ions the s o l u t i o n  f o r  An is 
x -  t T1LI*E* 

An = g'rl [ 1 - e 1 (1.28) 

We now wish t o  check our  assumption neglec t ing  the  d i f f u s i o n  cur ren t .  

d i f fus ion  current  due t o  t h i s  excess dens i ty  is  e D* dx dAn . Thus the  r a t i o  
of d r i f t  cur ren t  t o  d i f fus ion  cur ren t  is found t o  be 

The 

t - x  
BEG E* * 

= - (  kT ' t '1) (e - 11 
J d r i  f t 

Jdi f f 

L 

(1.29) 

*It is shown i n  the sec t ion  on e f f i c i ency  t h a t  a much more d e s i r a b l e  condi t ion 
would be s1 = 0 and s2 also = 0. 
i n  the  s p i r i t  of a "worst-case" ana lys i s .  

However, t hese  values  were chosen i n  M.S. 
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Fig. 1.8 Shortcircuit current as a 
function of sample width 
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* 2 A "worst-case" analysis  f o r  CdTe using values  of P 

T = sec, and t = cm shows t h a t  a t  x = 0, the  r a t i o  i n  equat ion 29 

has a value of 57, and t h a t  the  r a t i o  does not  reach uni ty  u n t i l  x = .98 t. 

Thus for  t h i s  mater ia l  system a t  least, i t  i s  v a l i d  t o  neg lec t  the  d i f fus ion  

cur ren t .  I n  general ,  the  approximation g e t s  b e t t e r  as the  quan t i ty  

= 100 c m  /v-sec, 

1 

increases .  

Now t h a t  neglect  of the  d i f fus ion  cur ren t  has been j u s t i f i e d ,  the  

sho r t - c i r cu i t  current  pe r  u n i t  width can be computed. Since 

there  r e s u l t s  f o r  the  PEM case 

(1.30) 

2 e t  where z = 
P*TIAEG 

I n  the  l i m i t ,  as z + 0 while  t remains constant ,  

1 2 = - eg t (0  + On). 
Y sc 2 P 
I 

This represents  t h e  maximum cur ren t  output f o r  a given thickness  t. The 

i n t e r p r e t a t i o n  is simple when one r e f e r s  t o  Figure 7. It w i l l  be r e c a l l e d  

t h a t  t an  On = On, t an  0 

when a l l  the  c a r r i e r s  generated i n  the  shaded t r i a n g u l a r  volumes of Figure 7 
reach the  contacts .  

= O by assumption. Thus the  maximum cur ren t  occurs 
P P  

* 

*It is i n t e r e s t i n g  t o  ca l cu la t e  how near  t o  the  condi t ion z=O an a c t u a l  case 
might be. Using the same "worst-case" ana lys i s  f o r  CdTe as t h a t  used a f t e r  
equat ion ?9, i.e., T =10-8sec, ~*=100 cm2/v-sec, t=10'3cm, AE =1.5 ev, 2 w i l l  
be 1.5, and therefore  1 g .. 

I I 1.34 eg(8 +O ) tL=.68 I Y sc P n  Y sc z=o 
Thus f o r  a 10-micron wide i n t r i n s i c  graded-gap region,  t h e  material proper t ies  
assumed above result  i n  a sho r t - c i r cu i t  cu r ren t  whose magnitude i s  about 
2 /3  of the  maximum avai lab le .  
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Since the  quant i ty  z seems t o  be  some s o r t  of f i g u r e  of merit, i t  may 

be informative t o  see what happens t o  An as z + 0. 

i t  can e a s i l y  be  shown tha t  i f  z goes t o  zero because T~ goes to  i n f i n i t y  

the  r e s u l t  i s  

Using equation 28  

* whereas i f  z goes t o  zero because l~ .+ 

corresponds t o  the  carriers being "whisked away'' a s  f a s t  as they are generated,  

Another quant i ty  of i n t e r e s t  is the  yalue of z f o r  maximum power t r a n s f e r ,  

This t i m e  the  values  of il, p*, and AE w i l l  be considered as given and the  

optimum value of t w i l l  be  found. 

o r  E* -+ a, then An vanishes.  This 

G 

2 The maximum t r ans fe rab le  power w i l l  b e  propor t iona l  t o  (Zy sc) Rint. 
Now, 

* 
- t L / K  t2 - K(1-e 

3 - const qo 
Y sc t 
I (1.31) 

where K - l / e  U * T ~  AEG. It can be shown t h a t  Rint = cons to  l/t. Therefore 

the  maximum power will vary as 
-tL /K) 2 t2 - ~ ( 1  - e 

7 = const.  1 
pnl t 

(1.32) 

dprn S e t t i n g  dt = 0 r e s u l t s  i n  a transcendentat  equation 

--z 7 - '2 
7 + 4 2  = e 

which can be solved graphica l ly  or numerically t o  y i e l d  the value of z 
corresponding t o  maximum power t r ans fe r .  

thickness  corresponding t o  t h i s  value is t = Eo 
s y s t e m  t h i s  tu rns  out  t o  be about 1 2  microns, which is q u i t e  encouraging 

i n  view of the  f a c t  t h a t  w e  are thinking of 10-micron wide t r a n s i t i o n  

reg ions  

This value is  about 0.9. The 

For the  CdTe HgTe 

The main r e s u l t  of t h i s  sec t ion  is  the  appearance of the  quant i ty  

, which is  a c r i t i c a l  parameter of t he  device. 

shown later t h a t  i t  is  indeed a f igure  of merit which i s  uniquely r e l a t e d  

t o  the e f f i c i ency  of the  device. 

I t  w i l l  be  e t 2  
2' 

UXT1 AEG 
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The preceeding s e c t i o n  has been consider ing u* t o  be constant .  However, 

as pointed out  e a r l i e r ,  t h i s  i s  a very poor assumption f o r  most ma te r i a l  s y s t e m .  

Therefore the  next s e c t i o n  t r e a t s  the  problem of a va r i ab le  mobil i ty  i n  the  

graded-gap region. 

case with a constant "ef fec t ive"  mobil i ty .  

1.3.3 Excess c a r r i e r  d i s t r i b u t i o n ,  va r i ab le  mobil i ty  

I t  w i l l  be shown t h a t  t h i s  s i t u a t i o n  may be reduced t o  a 

It i s  assumed t h a t  the  d i f fus ion  cur ren t  i s  s t i l l  n e g l i g i b l e  compared t o  the  

d r i f t  cu r ren t ,  which means t h a t  J =ep*f*An. Thus the  con t inu i ty  equat ion becomes nx 

L 
+ C e  (1.34) 

.* 
T g, a n d €  are  again assumed constant .  1' 

I f  a l i n e a r  behavior of the  "ambipolar" mobil i ty  v* is assumed, i .e. ,  

P* = p0 (1  + a x / t )  

then the so lu t ion  f o r  An i s  

(1.35) 

The i n t e g r a l  can be evaluated a n a l y t i c a l l y  f o r  i n t e g e r  o r  ha l f - in t ege r  * 
values  of *, i . e . ,  0, 1/2,  1, 312, 2,  -----e 

*For an i n t r i n s i c  HgTe-CdTe graded-gap region, the  quan t i ty  rl€*p; a 
w i l l  be about 3 x 10-3 c m  = 30 microns. 
i t  w i l l  be about 3 x 10-1 c m  

For a p-type sample 
3 mm. 
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The i n t e g r a l  w i l l  f i r s t  be evaluated using a " t h i n  sample" approximation 

1. Then t namely, 
T I E * P t  a 

a 
1 = - eg  t E P ~ ~  ( 1 4 2 1 2 

y sc 2 3 I 

(1.36) 

where the  condition t h a t  An = 0 a t  x = t has again been applied.  This 

s o l u t i o n  is  seen t o  have exac t ly  the same func t iona l  form as t h e  s o l u t i o n  

f o r  t he  case of cons tan t  mobi l i ty  and i n f i n i t e  l i f e t i m e ,  except t h a t  t h e  

cons tan t  mobili ty has been replaced by I v a r i a b l e  mobili ty.  

r e s u l t ,  s i n c e  both the  t h i n  sample approximation and the i n f i n i t e  l i f e t i m e  

This 1s a p l a u s i b l e  

approximation are equiva len t  t o  aeg lcc t ing  the recombination process.  

The s h o r t - c i r c u i t  cu r ren t  in the t h i n  sample is 

I f  a p-type sample is orsumed, then p* s u n .  
much l a r g e r  than Q . 

Furthermore, On is genera l ly  * 
Thus i f  i t  is assumed t h a t  un = ~ , ( 1  + on x / t )  then 

P 

(1.37) 

The term ou t s ide  the  i n t e g r a l  i n  the above exprers ion  is t h e  maxiarum c u r r e n t  

a v a i l a b l e  from a graded-gap region wi th  a constant mobi l i ty  uno and a width 

t, whi le  t he  i n t e g r a l  i t s e l f  may be  i n t e r p r e t e d  as an average va lue  of an. 

For t h i s  case 

thus 

(1.38) 

o r  
1 2 

B'n e f f  = - e g t  y sc 2 I 

*This i s  c e r t a i n l y  t r u e  i n  t h e  HgTe-CdTe system, where 0 /O 
and % 0.01 f o r  HgTe. 

- X O . l  f o r  CdTe 
P *  
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i s  approximately one-third of the  maximum value of p (x) .  n 
= 1 may be t r e a t e d  by the  same process.  Here t n e f f  where p 

The case where 
i1 ~ * I J , *  a 

t he  r e s u l t  w i l l  be  

1 t l + a  
c'p*, a 10' [ 1 + a x / t  An(x) = 

and 

( 1 . 3 9 )  

(1.40) 

and while i n  t h i s  case the  i n t e g r a l  may r equ i r e  numerical eva lua t ion ,  i t  i s  

s t i l l  c l e a r  t h a t  i t  represents  a c e r t a i n  average of a . n 
I f  w e  assume a graded region width of 10 microns, then f o r  HgTe-CdTe, 
1 3 -8 E* = - AEG/t  = 1.5 x 10 

p-type sample with p* a = 20,000 c m  /v-sec, 'I E * p z  ; = 3,000 microns, 

whereas f o r  an i n t r i n s i c  s t r u c t u r e  with p* a = 200 cm /v-sec, ~ ~ E * p g  a = 30 

microns. Thus the thin-sample approximation 

one f o r  the p-type sample, whereas 
T~ €*I.$ a 

appropriate  f o r  an i n t r i n s i c  sample. 

v/cm; T i s  assumed t o  be  10 sec; then f o r  a 
l 2  e 

0 1 

"N 0 is  a very good t 0 

il&*$ a 
= 1 / 2  might be  more t 

Dif fe ren t  s i t u a t i o n s  w i l l  lead t o  d i f f e r e n t  average values  of a b u t  n' 
the  main poin t  i s  t h a t  the  output cur ren t  is  the  same as t h a t  of a constant-  

mobi l i ty  graded-gap device with p* = ' o  e f f '  
A similar argument appl ies  t o  the  i n t r i n s i c  case where p*(x) 5 p  (x) .  

P 
Thus a graded-gap device with a l i n e a r l y  varying mobi l i ty  i s  equiva len t ,  a t  

least as f a r  as output cur ren t  i s  concerned, t o  a graded-gap device with 

a constant  mobili ty which i s  some f r a c t i o n  of t he  maximum value of t he  

a c t u a l  mobil i ty .  I t  w i l l  therefore  be assumed t h a t  the  ca l cu la t ions  of t he  

previous s e c t i o n  can be appl ied t o  a var iable-wobil i ty  graded-gap device by 

t r e a t i n g  i t  as a device with a constant  e f f e c t i v e  mobil i ty .  

The rest of the t h e o r e t i c a l  chapter  of the  au thor ' s  M.S, t h e s i s  w a s  

devoted t o  a comparison of the  graded-gap device wi th  a s tandard  PEM c e l l  

made out  of e i t h e r  one of the  ind iv idua l  semiconductors o r  some intermediate  

a l loy .  The conclusion reached was t h a t  under any r e a l i s t i c  condi t ions 

of i l lumina t ion ,  the graded-gap device would be more e f f i c i e n t ,  due pr imar i ly  
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Graded - Gap 
P E M  

Fig. 1.9 Comparison of 1-V 
characteristics 
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t o  t h e  f a c t  t h a t  t he  " d r i f t  length" f o r  excess carriers i n  the  graded region 

is  much longer  than the d i f fus ion  length,  the  r a t i o  being given by 

r 1 
I J". 'eff graded pap 

s tandard  ce l l  kT 'eff 

Ins tead  of going i n t o  t h i s ,  i t  might be more i n t e r e s t i n g  t o  make some 

comments of a preliminary na tu re  on the  absolu te  e f f i c i ency  of a graded-gap 

PEM device.  These w i l l  be somewhat specu la t ive  and approximate i n  na ture ,  

s ince  the exact  ana lys i s  f o r  the case of high i l lumina t ion  and high magnetic 

f i e l d  has no t  y e t  been carried out .  However, i t  should be poss ib l e  t o  show 

a t  least some of the b a s i c  l imi t a t ions  on the  e f f i c i ency  of such a device.  

1.4 Ef f ic iency  of the  Graded-Gap PEM Device 

For a given i l lumina t ion ,  the  output power w i l l  be maximum when the  

product I V is  maximum. This i n  turn  depends on the  I-V c h a r a c t e r i s t i c s .  

The maximum output power f o r  a photoce l l  is thus usua l ly  w r i t t e n  

max = voc I S C  
P 

where f is  a " f i l l f a c t o r  which depends on the I-V c h a r a c t e r i s t i c s .  

the  sketches i n  Figure 9 show, the  f i l l  f a c t o r  f o r  a pn junc t ion  c e l l  can 

be  g rea t e r  than 0.8; f o r  the  graded-gap PEM c e l l  under considerat ion,  the  

l i n e a r  I-V c h a r a c t e r i s t i c  r e s u l t s  i n  a f i l l  f a c t o r  of 0.25. 

As 

1.4.1 The case s(0)  = 0, s ( t )  = 

Recombination w i l l  be neglected a t  f i r s t ,  f o r  s impl i c i ty ;  t h i s  is  

This r e s u l t s  i n  equiva len t  t o  making the " th in  sample" approximation. 

1 2 
B'n e f f  = - e g t  Y sc 2 I 

where g i s  the  uniform generat ion rate equal t o  q / t ,  where q 

of photons per  c m  p e r  s e c  inc ident  on the  sample.  

i s  the  number 
0 0 2 

The open-circuit  vol tage is given by 

(1.41) 
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but  f o r  a p-type sample wi th  equi l ibr ium concent ra t ion  po and low i n j e c t i o n  

conditions (An = Ap << po), 

thus 

(1.42) 

Now, the  inpu t  power i s  qo EAv, where EAv is t h e  average photon energy. 

EG2 + EG1 
2 For the  i l l umina t ion  spectrum shown i n  Figure 5 ,  EAv . 

Thus the  expression f o r  e f f i c i e n c y  is 

AEG Now, by no t ing  t h a t  An(v0)  = 

t h e  e f f i c i e n c y  expression can be r ewr i t t en  

and t h a t  thus qo - An(@)~r* i~ 

1 2 An(P0)  u*(xpO) AEG 

p AV EG1 EG2 n = 8 (Bun)eff P u (1.43) 

It is  obvious from t h e  form of equat ion 43 t h a t ,  up t o  a po in t ,  a t  

l e a s t ,  t he  e f f i c i e n c y  w i l l  increase  as the  magnetic f i e l d  and the  

i l l umina t ion  are increased. 

An inqu i ry  i n t o  the u l t i m a t e  e f f i c i e n c y  of the  device thus requi res  

a knowledge of i t s  behavior both a t  high magnetic f i e l d s  and a t  high 

i l l umina t ion .  

follows should at least give an idea of t he  l i m i t i n g  f a c t o r s  involved, even 

though the  exac t  numerical values of t he  e f f i c i e n c y  may be somewhat open 

t o  ques t ion .  

This ana lys i s  has  not been c a r r i e d  out  i n  d e t a i l ,  bu t  what 
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1.4.2 High magnetic f i e l d s  

takes  the  I n  h i s  treatment of conduction i n  a magnetic f i e l d ,  Smith (17) 

s o l u t i o n  t o  the  Boltzmann equat ion through one f u r t h e r  o rde r  of approximation 

t o  inc lude  B2 terms. 

cu r ren t s  which he der ived earlier,  t h e  term BP i s  replaced by a term 

The au thor  f e e l s  t h a t ,  based on the  developments i n  h i s  M.S. t h e s i s ,  

i t  i s  e n t i r e l y  reasonable t o  expect the  same th ing  t o  happen i n  t h i s  case. 

This would en ter  d i r e c t l y  i n t o  the  expression f o r  e f f i c i e n c y  (43). 

The n e t  r e s u l t  i s  t h a t  i n  the  expressions f o r  the  
BD 

1 + B v  2 2 '  

Exactly how i t  w i l l  e n t e r  i n  i s  another  ques t ion ;  s i n c e  the  mobil i ty  i n  

general  w i l l  vary q u i t e  s t rongly  i n  the  graded region, Bp(xl)=l may imply 

Bv(x2) >> 1 elsewhere. 

the graded region, the maximum value of BU is  
1+B2p2 ana lys i s ,  i t  w i l l  be assumed t h a t  the  

However, even i f  the  mobil i ty  i s  cons tan t  throughout 

So f o r  a "best  case" 2 .  
magnetic f i e l d  f a c t o r  

1 i n  the  e f f i c i ency  i s  - 4' (B "n) e f f 

1.4.3 Hinh i l lumina t ion  

High i l lumina t ion  w i l l  be t r e a t e d  by consider ing the  r e s u l t i n g  conduct ivi ty  

- ISC modulation, and i ts  e f f e c t  on the  open-circui t  vol tage.  

and 

Since Voc 

Now, i f  recombination i s  neglected and a s t rong ly  p-type sample i s  assumed, 

and i f  i t  i s  a l s o  assumed t h a t  "n, Since the  material is p-type, p* zz 
>> v then 

"n P' 
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Conductivity modulation thus begin t o  take  p lace  when 

The open-circuit  vol tage is given now by 

(1.44) 

(1.45) 

(1.46) 

Thus the  behavior of t he  open c i r c u i t  vo l tage  should be, for  low i l lumfnat ion  

i n  o t h e r  words, l i n e a r  w i t h  f l l t t rdna t ien  i n t e n s i t y  q,, md €ar hi@ 
i l lumina t ion  

"oc = E* ( B Q e f f  d 

1 AEG and s i n c e  5" = t 

= -  "G 
'OC e t (Bpn)cff 

(1.47) 

( 1 . 4 8 )  

I n  o t h e r  words, f o r  high i l luminat ion,  t he  open c i r c u i t  vol tage should 

s a t u r a t e  and become independent of i l lumina t ion .  The "breakpoint" o r  

d iv id ing  l i n e  between the  two types of behavior occurs f o r  a value of 
i l l umina t ion  such t h a t  qo = 2 E* pP Av po. 

The e f f i c i ency  is d i r e c t l y  dependent on the  behavior of the  open-cir- 

c u i t  voltage.  The expression is 

(1.49) 
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Making the  previous assumption about the  high-magnetic-field dependence 
2 1 

and l e t  

a t  high i 1 lumination, becomes 

= z, then the  expression f o r  maximum e f f i c i e n c y ,  occuring 

a -  1 EG2 E G l  

l6 EG2 + EG1 Omax (1.50) 

Thus i t  i s  easy t o  see t h a t ,  based on the  model under d iscuss ion  thus f a r ,  

i t  €s n o t  a t  a l l  reasonable  to  expect e f f i c i e n c i e s  g r e a t e r  than 5% from % 

graded-gap device operated i n  the PEM node, a t  least not  wi th  the type of 

i l l umina t ion  spectrum w e  have assumed. However, i t  must be borne i n  mind 

t h a t  ou r  model makes very s p e c i f i c  assumptions about bulk and su r face  

reconbination. The e f f e c t  of these  assumptions w i l l  now be  considered b r i e f l y .  

Bulk recombination and the  e f f e c t s  of  f i n i t e  su r face  recombination 

ve loc i ty  e n t e r  i n t o  the  e f f i c i e n c y  c a l c u l a t i o n  as follows: It has  been 

shown t h a t  i f  recombination i s  included,  the  s h o r t  c i r c u i t  cur ren t  can be 

w r i t t e n  as 

2 e t  where z = p*T 

s u r f  ace 

v a r i a t i o n  of u , etc. 

. The exac t  form of F(z) depends on An(x) and thus on the  

recombination v e l o c i t i e s  s1 and s as w e l l  as on the  s p a t i a l  2’ * For the  case discussed ea r l i e r  (sl = 0 ,  s2 = m) 

z - 1 + e-‘ 
2 F(z) * - 

Z 

and has the property t h a t  F(0) = 1 / 2 ,  F(=) = 0. 

z thus br ings  i n  the e f f e c t s  of  f i n i t e  thickness  t ,  mobi l i ty  p*, l i f e t i m e  

T 1’ 
F(z) .  

[F(z) 1 2 .  
However, i t  is  important t o  remember t h a t  only a very s p e c i a l  set of su r face  

recombination v e l o c i t i e s  has been considered. 

and gap gradient  &*, whereas t h e  s u r f a c e  e f f e c t s  come i r ,  throuyl- t he  form of 

The expression f o r  e f f i c i e n c y  i s  then simply mul t ip l i ed  by a f a c t o r  

Thus, including the  bulk reconbinat ion usua l ly  lowers t h e  e f f i c i ency .  

A simple example w i l l  i l l u s t r a t e .  

1.4.4 The case s(0) = 0, s ( t )  = 0 

In the  constant  mobil i ty  case and f o r  s1 = 0, s = a, w e  obtained 2 
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d q O t  
- P  
R e Potpp AV * e 

Conductivity modulation thus begin to take place  when 

4, % 2E*  pp AV Po 

The open-circuit  vol tage i s  given now by 

(1.44)  

(1.45) 

(1.46) 

Thus the  behavior of t he  open circuit vol tage  should be, for  lw i l lumfnat ion  

i llumfnation 

and s ince  E* 

i n  o t h e r  words, l i n e a r  with i l lumina t ion  i n t e n s i t y  q,, and for high 

1 "G 
e t  

L-- 

I n  o t h e r  words, f o r  

s a t u r a t e  and become 

high i l luminat ion,  the  open c i r c u i t  vol tage should 

independent of i l luarfnatfen.  The "breakpoint" o r  

(1.47) 

(1,481 

d iv id ing  l i n e  between the  two types of  behavior oecurs for a value of 

i l l umina t ion  such t h a t  q = 2 e* LIP Av Po. 

c u i t  voltage.  The expression is 

0 
The e f f i c i ency  is d i r e c t l y  dependent on the  behavior of the  open-cir- 

l -  

l -  

(1.49) 
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Making the  previous assumption about the  high-magnetic-field dependence 
2 1 and l e t  (Bun)ef f  = 6, then the  expression f o r  maximum e f f i c i e n c y ,  occuring 

a t  high i l lumina t ion ,  becomes 

x -  1 EG2 - E G l  

l6 EG2 + EG1 nulax (1.50) 

Thus i t  i s  easy t o  see t h a t ,  based on the  model under d iscuss ion  thus f a r ,  

i t  i s  n o t  a t  a l l  reasonable  t o  expect e f f i c i e n c i e s  g r e a t e r  than 5% from 

graded-gap device operated i n  the  PEM node, a t  least no t  with the type of 

i l l umina t ion  spectrum w e  have assumed. However, i t  must be  borne i n  mind 

t h a t  ou r  model makes very s p e c i f i c  assumptions about bulk and su r face  

recombination. The e f f e c t  of  these  assumptions w i l l  now be considered b r i e f l y .  

Bulk recombination and the  e f f e c t s  of f i n i t e  su r face  recombination 

v e l o c i t y  e n t e r  i n t o  the e f f i c i e n c y  ca l cu la t ion  as follows: It has been 

shown t h a t  i f  recombination i s  included,  t he  s h o r t  c i r c u i t  cu r ren t  can be 

w r i t t e n  as 

2 e t  where z = pT AE 

s u r f  ace 

v a r i a t i o n  of u*, etc. 

. The exac t  form of F(z)  depends on An(x) and thus on the  

recombination v e l o c i t i e s  s and s as w e l l  as on the  s p a t i a l  1 2’ 
For the  case discussed earlier (sl = 0, s,, = m) 

6 

z - 1 + e-’ 
F(z) f - 9 

Z L  

and has the property t h a t  F(0) = 1/2,  F(-) = 0. 

z thus br ings  i n  the e f f e c t s  of  f i n i t e  thickness  t ,  mobi l i ty  u*, l i f e t i m e  

T 1’ 
F ( z ) .  

[F(z)  I*. 
However, i t  is important t o  remember t h a t  only a very s p e c i a l  set of su r face  

recombination velocities has been considered. 

and gap gradient &*, whereas the  su r face  e f f e c t s  come i r ,  throuEh the form of 

The expression f o r  e f f i c i e n c y  is  then simply mul t ip l i ed  by a f a c t o r  

Thus, including the  bulk recombination usua l ly  lowers the  e f f i c i ency .  

A s imple example w i l l  i l l u s t r a t e .  

1.4.4 The case s ( 0 )  = 0, s ( t )  = 0 

In the  constant  mobil i ty  case and f o r  s = 0, s = -, we obtained 1 2 
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I -  

x -  t 
-l 
1. However, f o r  s = 0 ,  s2  = 0, w e  would obta in  Y* 7 

1 An(x1 = g T 1 k  - e 

h ( x )  = g r  with 1 

1 thus F(z)  = -now. This means t ha t  f o r  z = 1 (not  unreasonable f o r  t he  

HgTe-CdTe system), F(z)  f o r  s 2  = 

F(z)  = 1; t h i s  corresponds t o  a seven-fold increase  i n  e f f i c i ency .  I n  HgTe- 

CdTe t h i s  would correspond t o  7/16 x 

Obviously our  assumptions s t a r t  

Z 

is  e-' = .37, whereas for s = 0 ,  2 

25 30-40%. 
t o  break down f o r  small values EG2'EG1 

of 2, s ince  otherwise w e  would have a i n f i n i t e l y  e f f i c i e n t  device. However, 

t h i s  example does show t h a t  the  e f f i c i ency  of the  device i s  q u i t e  s e n s i t i v e  

t o  t he  su r face  reconbinat ion v e l o c i t i e s  and would probably be improved by 

reducing the  su r face  recombination ve loc i ty  s 2  at  the  back face.  

d e t a i l e d  d iscuss ion  of the  e f f e c t s  of  f i n i t e  su r face  r e c o d i n a t i o n  v e l o c i t i e s  

w i l l  be poss ib l e  when the  equations f o r  An(x) f o r  t he  general  case [which 

were s e t  up i n  the  au thor ' s  M.S. t h e s i s ]  are solved. 

A more 

L e t  us summarize t h i s  sec t ion .  We derived an expression f o r  the  

e f f i c i e n c y  of a graded-gap PEM device v a l i d  f o r  small magnetic f i e l d s  and 

low i l lumina t ion .  We then ex t rapola ted  r e s u l t s  obtained by Smith (I7) f o r  

homogeneous mater ia l s  and assumed t h a t  t he  magnet ic-f  i e  Id-dependent f a c t o r  

i n  the  e f f i c i e n c y  had a maximum value of 1/4. 
main e f f e c t  of high i l l umina t ion  was conduct ivi ty  modulation. We then showed 

t h a t  with an input  spectrum matched t o  give a uniform generat ion rate and 

wi th  the  assumptions on su r face  recombination v e l o c i t y  (sl = 0, s2  = -1 
which our a n a l y t i c a l  model includes,  t h a t  the  maximum ef f ic iency"  i s  only 

s l i g h t l y  g r e a t e r  than 5%. 

su r face  recombination ve loc i ty  and showed t h a t  f o r  a case i n  which s1 = 0,  

s 2  = 0, the  e f f i c i e n c y  f o r  z = 1 was seven times g r e a t e r  than f o r  s 

W e  a l s o  assumed t h a t  t he  

However, w e  then changed the  assumption about 

= 0, 1 
s = 00. 2 

Both the  assumptions on high magnetic f i e l d  and high i l l umina t ion  ignore 

some quantum e f f e c t s  and s t a t i s t i c a l  e f f e c t s .  However, these  should r e s u l t  

only i n  second-order cor rec t ions  t o  the  model. 

*This maximum occurs f o r  z = 0 .  
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t 

Fig. 1.10 Graded-gap photocell 
w I thout magnet i c field 
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1,s Operation Without a Magnetic F ie ld  

This s e c t i o n  considers the poss ib le  opera t ion  of a graded gep devlee 

Our purpose w i l l  no t  be t o  der ive  d e t a i l e d  I-V without  a magnetic f i e l d .  

c h a r a c t e r i s t i c s ,  bu t  just t o  show t h a t  a p o t e n t i a l  can be set  up between 

the  two faces  of a graded-gap photocell  even i n  the  absence of a magnetic 
f i e l d .  

The devices considered by Tauc, Emtage, and Sega l l  and Pe l1  a l l  
operated without  a magnetic f i e l d ,  and the conclusion reached by these  

authors have already been disculssed i n  t h e  s e c t i o n  on "Theoretical  Back- 

ground." 

x-direct ion by using the procedures and results of t h e  au thor ' s  M.S. t h e s i s .  

We w i l l  be i n t e r e s t e d  i n  de r iv ing  t h e  open-circuit  vo l t age  i n  the  

Our s t a r t i n g  po in t  i s  equation 10 (of t h i s  paper) f o r  t he  photopotent ia l  

4-tj0. 

e f f e c t s .  Then equation 10 becows  

B - 0, of course, and we a b 0  assume An X. const ,  t o  igaore d i f f u s i o n  

I f  t he  material i s  s t rong ly  p-type so t h a t  

d 
dx 

popp >> n, un then 
c 

I (1.52) 

I n s e r t i n g  the values f o r  &: and&: derived i n  conneetien with equation 21 

and i n t e g r a t i n g  y i e l d s  f o r  the p-type case  

f o r  low i l l umina t ion ,  and 

%l - AEG 
P voc 'n+"p e 

(1.53) 

(1  5 4 )  

f o r  high i l lumina t ion .  This agrees wi th  the  r e s u l t s  of Tauc end Emtage. 

For n-type material, t he  corresponding r e s u l t s  are 
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I 

i f o r  high i l l umina t ion  "n 
t-- - 

voc up+)ln e 

For i n t r i n s i c  mater ia l ,  equation 51 becomes 

(J n +An 2e dx 
- d (0-0,) P - - +  J - An - 1 - 
dx i 

and thus 

I IJ -v An kT n p voc = + - - f o r  low i l lumina t ion ,  and "i 2 e )ln+vP 

IJ -P AEG 
, np -  f o r  high i l lumina t ion  voc 'n+"p 2e 

(1.55) 

(1.56) 

* 
where n is the  i n t r i n s i c  concentrat ion a t  the  small-gap s i d e  of the  device.  1 2  

To go fu r the r  than t h i s  with an exac t  t reatment  i t  is necessary t o  f ind  

An f o r  t h i s  s i t u a t i o n  with a ne t  cur ren t  flowing along the  d i r e c t i o n  of the  

gap gradient .  

c a r r i e d  out  here  f o r  reasons of space. 

approach developed by the  author  t o  show t h a t  a graded-gap device can operate  

without a magnetic f i e l d  has  c e r t a i n l y  been accomplished, and the  r e s u l t s  

agree with those of o thers  where ava i lab le .  In  p a r t i c u l a r ,  the  expressions 

f o r  open-circui t  voltages tend t o  v e r i f y  the  s ta tement  by Emtage t h a t  i f  

un > P 

band-gap mater ia l .  

This should present  no new d i f f i c u l t i e s ,  bu t  w i l l  no t  be 

Our o r i g i n a l  purpose of using the  

i t  w i l l  generally be des i r ab le  t o  use acceptor  doping i n  the  va r i ab le  
P' 

*Equation 57  bears out  the s ta tement  by Segal l  and P e l 1  t h a t  f o r  an i n t r i n s i c  
device with pn - p there  is no output .  

P' 
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APPENDIX A 
BASIC THEORETICAL ASSUMPTIONS 

1. Effective-Mass - Treatment __-I-I-"_- of - I Band-Edse _--- _-- --I- Gradients  I--- - -__- _ -  .-. . 

Kromer(1) has given the  most d e t a i l e d  d iscuss ion  of t h e  e f f e c t  of band- 

edge gradient  on carrier motion, but t o  f ind  o u t  the  l imi t a t ions  of h i s  

t reatment  it is wcrrthwhile to  review b r i e f l y  the work o f  S l a t e r  (la) i n  h i s  

paper on "E€ectrons i n  Perturbed Periodic Lattices", which forms the b a s i s  

for grijraeb'a uork. 

The p e r f e c t l y  pe r iod ic  ee9111ctmduc~ur c r y s t a l  is Beacrlbed by the  

SchrGdinget equation 

where Ho is t he  hamiltonian descr i%iog &be p e r f e c t l y  p r i d e  crystal and 

$o(k,r) is me of the  eigenfunctions,  eorrespandlng t o  an e i l e w a l u e  E e). 
The e f f e c t i v e  mass, of course, en te rs  in through the  form of Eo(k). 

0 

I f  we now consider  a per turba t ion  t~ the p e r f e c t l y  pe r iod ic  hamiltonian 

H of  the  form 
0 

where H 

then the  new eigenvalues E a r e  given by the  equat ion n 

is "slowly varying", and is  t o  be s p e c i f i e d  i n  more detail  later, 1 

(19) We choose t o  form the  eigenfunctions JI (r) as a sum of Wannier funct ions n 

where a ( r - r i )  is t he  Wannier funct ion on the  i t h  atomic s i te  and Qn(ri)  is 

an appropr ia te  amplitude function. 

the  expansion f o r  $ i n t o  the  Schrb'dinger equat ion,  pre-multiplying by the  

complex conjugate of $ and in t eg ra t ing .  I f  H va r i e s  so slowly with r t h a t  

The form of Q ( r i )  i s  found by i n s e r t i n g  n 

n 
n' 1 
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i t  can be rcgar-ded as approximately cons tan t  over t he  atomic wave funct ion 

of  an  atom, then i t  can be  taken ou t s ide  the  i n t e g r a l ,  and the  or thogonal i ty  

p r o p e r t i e s  of  the Wannier func t ions  are such t h a t  @ (r ) is  given by n i  

which corresponds t o  a p a r t i c l e  with an e f f e c t i v e  mass determined by the form 

of  E and wi th  an eigenvalue E moving under t h e  in f luence  of  an e l ec t ro -  

s t a t i c  p o t e n t i a l  H1. 

It is easily seen t h a t  whether the  pe r tu rba t ion  Hl(r)  i s  taken t o  be 

e $ ( r )  due t o  some ex te rna l  e lectr ic  f i e l d  o r  whether i t  is taken t o  be a 

p o s i t i o n  dependent band edge, f o r  ins tance ,  H = p  /2m* + E (x) ,  the  problem 

is the  same i n  e i t h e r  case. 

0 n 

2 
C 

From here  on w e  proceed by s tandard  methods; t h a t  is, the  c e n t e r  of mass 

of a wave packet moves according t o  the  classical  Hamilton's equat ions,  so 

t h a t  

and so f o r t h ,  with the  r e s u l t  being t h a t  the  n e t  fo rce  t e r m  t o  be i n s e r t e d  

i n t o  the  Boltzmann t r anspor t  equat ion i s  given by 

i 

I 
2 m  1 m dx 

e (- e -' e 
Fe I - 

f o r  conduction band e l ec t rons ,  and 

\ 
\ 

I 

i 

dEc dE" 
f o r  valence band holes .  I f  t he  bandgap va r i e s  with pos i t i on ,  -- i d x 9  dx 
and the  forces  on e l e c t r o n s  and holes  w i l l  not b e  t he  same. For t h i s  ~ C O S C P I I  

Krsmer descr ibed the forces  as a r i s i n g  from "quGsi-electr ic  f i e l d s  .'I 

With the  references shown i n  Fig. 1, Ec and Ev are a l s o  c a l l e d  the  

"e lec t ron  a f f i n i t y "  and "hole a f f i n i t y " .  They are p r o p e r t i e s  of the  material 
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alone, and do not  depend on such things as the  doping o r  excess c a r r i e r  

dens i ty .  

func t ion  of d i s tance .  

They are f ixed once the v a r i a t i o n  i n  composition is  f ixed  as a 

The terms containing the  effective-mass grad ien ts  i n  equat ion  (A4) show 

the tendency of t he  carriers t o  move from regions of small e f f e c t i v e  mass 
t o  regions where the e f f e c t i v e  mass i s  l a rge r .  

compare magnitudes of cu r ren t s  due t o  gap v a r i a t i o n s  and cu r ren t s  due t o  

e f f e c t i v e  mass v a r i a t i o n s ,  i t  w i l l  be  assumed t h a t  t he  e f f e c t i v e  masses 
are propor t iona l  t o  the  energy gap. 

band s t r u c t u r e  ca l cu la t ions  (*') i f  t h e  conduction and the  valence bands are 

the only bands which are in t e rac t ing .  

the experimental r e s u l t s  of Harman e t  a1 (16) show t h a t  t he  e f f e c t i v e  masses 
are very near ly  propor t iona l  t o  the  energy gap. 

In  o rde r  t o  eventua l ly  

This p o s s i b i l i t y  i s  p red ic t ed  by k - p  

For t h e  HgTe-CdTe system, a t  least, 

i n  equation and -- 1 dme I f  t h i s  assumption iaEmade, then both ;;;- - 1 d% 

mh dx dx 1 G e 
EG dx (A4) are replaced by - - . 

L e t  us see what l i m i t a t i o n s  the assumption t h a t  H1 is "slowly 

varying" pu t s  on t h i s  approach. 

l i n e a r  v a r i a t i o n  i n  E between two va lues ,  and l e t  us spec i fy  t h a t  no t  more 

than  1% of t h i s  change s h a l l  occur over  t he  e x t e n t  of one atomic wave function. 

L e t  us take  t h i s  e x t e n t  t o  be 10 angstroms. Thus the t r a n s i t i o n  region 

should no t  be narrower than 10 A o r  0.1 microns i n  o rde r  f o r  t h i s  e f f e c t i v e  

mass treatment t o  apply. 

Let us assume t h a t  w e  have a more o r  less 

C 

3 0  

2. Boltzmann Transport Theory 

Very few words w i l l  be s a i d  about Boltzmann t r a n s p o r t  theory and i t s  
(17) l i m i t a t i o n s  because a good d iscuss ion  of t h i s  t o p i c  is  given by Smith. 

H e  shows t h a t  Boltzmann theory can be  used t o  exp la in  most "low-field" 

magnetic-field e f f e c t s ,  bu t  t h a t  quantum-mechanical and o t h e r  e f f e c t s  

arise a t  high magnetic f i e l d s  which d i sag ree  wi th  many of t he  p red ic t ions  

of Boltzmann theory. 

I n  a l l  cases the  d iv id ing  l i n e  between low- and h igh - f i e ld  behavior  

i s  the  condition Bp  = 1. It is d i f f i c u l t  t o  p r e d i c t  p r e c i s e l y  how these 

h igh - f i e ld  cons idera t ions  w i l l  a f f e c t  t he  opera t ion  of t h e  graded-gap 

device  without  f u r t h e r  ana lys i s .  However, L ~ s o n ' ~ )  and Nielsen have 

r epor t ed  mob i l i t i e s  i n  excess of 100,000 c m  /v-sec i n  t h e i r  i n v e s t i g a t i o n  
2 
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of  HgTe-CdTe a l loys ,  and it  may be i n t e r e s t i n g  t o  po in t  out  t h a t  f o r  such a 

l a r g e  mobi l i ty ,  t h e  condi t ion Bu = 1 is reached f o r  B = 1 kilogauss .  

3. Quasi-Neutrality 

Jons che r (20) gives a good desc r ip t ion  of the  use of the  "quasi-neutral" 

approximation i n  f ind ing  the  e l e c t r o s t a t i c  p o t e n t i a l  d i s t r i b u t i o n  i n  a non- 

uniform semiconductor. 

i t  is  f i r s t  assumed t h a t  the  semiconductor i s  s t r i c t l y  neu t r a l .  The p o t e n t i a l  

is  then ca lcu la ted  on t h i s  bas i s .  

This is a kind of "se l f -cons is ten t"  process i n  which 

This treatment i s  exac t ly  co r rec t  only i n  very s p e c i a l  ca ses ,  because 

any s p a t i a l  v a r i a t i o n  i n  the  p o t e n t i a l  g rad ien t  must be accompanied by a 

n e t  space charge. Thus the  next  s t e p  i n  the  procedure i s  t o  c a l c u l a t e  t he  

n e t  space charge necessary t o  support  the  p o t e n t i a l  calculated on the  

assumption of s t r i c t  n e u t r a l i t y .  I f  t h i s  net  space charge i s  small t-ompared 

t o  the  n e t  mobile c a r r i e r  concentrat ion,  then the  assumption of quasi-  

n e u t r a l i t y  i s  j u s t i f i e d .  

In  a constant  band-gap semiconductor, the quasi-neutral  approximation 

is  usual ly  good if the  doping dens i ty  change i s  l e s s  than some s p e c i f i e d  

percentage i n  a c e r t a i n  c h a r a c t e r i s t i c  length c a l l e d  the  Debye length.  I n  

a graded gap region with uniform doping, i t  w a s  shown i n  the  author 's  M.S. 
t h e s i s  (and a l s o  i n  the  next  appendix) t h a t  the  condi t ion  of se l f -cons is tencv  

f o r  the  quasi-neutral  t reatment  becomes t h a t  the  change i n  energy pap i n  

a Debye length be small compared t o  kT. 



APPENDIX B 
QUASI-NEUTRALITY I N  THE GRADED-GAP DEVICE 

* 
The e l e c t r o s t a t i c  p o t e n t i a l  must s a t i s f y  Poisso:i's equation 

- V*(&V$) = P 

where E = d i e l e c t r i c  cons tan t  and p = charge d i s t r i b u t i o n .  It i s  assumed 

t h a t  t h e  d i e l e c t r i c  constant does not vary i n  the inhomogeneous region. 

(As Emtage po in t s  ou t ,  t h i s  i s  probably a good assumption.) 

The e l e c t r o s t a t i c  p o t e n t i a l  i s  a l s o  r e l a t e d  t o  t h e  carrier concent ra t ion  

-6 n = N  e = N  e 
C C 

kT 

Now, s i n c e  the  n e t  charge dens i ty  p i s  given by 

P -  

(Nd and Na are donor and 
assumed t o  be  completely 

e(p-n + Eld - Na) 

acceptor  concentrations,  r e spec t ive ly ,  and are 
ionized) ,  Poisson's equat ion  can be  r e w r i t t e n  

e(+-$,) 
2 s inh  [ kT ] + 

and $i i s  defined by Nd - Na where = 
n, A 

-(Ec - Ef - e$,) 
-6i = N e  

C 
n = N e  kT i C 

*This treatment follows t h a t  of Jonscher (20) (p. 1 7  and p. 154)  q u i t e  
c lose ly .  
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o r  

1 - - EG - Ef - - 1 kT In Nc/Nv) 
Cpi = (Ec 2 2 

Applying the  quasi-neutral  approximation t o  equat ion (Bl) cons i s t s  of 

assuming t h a t  Cp is given wi th  s u f f i c i e n t  accuracy by the  s t r i c t l y  neu t r a l  

s o l u t i o n  
- 

( B 4 )  
N s inh  (@-Qi) = - - 2 

(Here w e  have defined @ - s). 
by the  s p a t i a l  va r i a t ion  of  the doping and the  i n t r i n s i c  concentrat ion n 

This would mean t h a t  @-@. would be determined 
1 

i' 
In  a homogeneous semiconductor, the  quas i -neut ra l  approximation is  

enough t o  spec i fy  the  e l e c t r o s t a t i c  p o t e n t i a l  d i s t r i b u t i o n  $. However, 

equat ion (B3) shows t h a t  0, contains  the  band edge v a r i a t i o n  as we l l  as the  

bandgap va r i a t ion .  Pu t t ing  i t  another  way, one would have t o  know the  

e l e c t r o n  a f f i n i t y  as w e l l  as the  bandgap as  a funct ion of a l l o y  composition 

i n  o rde r  t o  ca l cu la t e  4. It w i l l  be shown later t h a t ,  fo r tuna te ly ,  as 

long a s  the  va r i a t ions  a r e  s u f f i c i e n t l y  gradual ,  t he  e l e c t r o n  a f f i n i t y  

does = e n t e r  i n t o  the behavior of t he  device.  

The quan t i ty  which determined once N (x)-N (x) and EG(x) are d a * 
s p e c i f i e d  is 6(x), s i n c e  equat ion (€34) can be converted t o  

where 

The 9 

i s inh  (6-di) = - - 2 

1 1 
di = EG/kT + 2 In  Nc/NV 

asi-neutral  approximation i s  v a l i d  only when depar tur -s  from 
2 2 n e u t r a l i t y  a r e  qu i t e  small, and -E/e ni 2 $/ax2 i s  much smal le r  than e i t h e r  

t e r m  on the  right-hand s i d e  of Poisson's equat ion (Bl).  ' b o  cases  w i l l  be 

checked f o r  self-consis tency:  undoped material (N = 0) and uniformly 

e x t r i n s i c  mater ia l  (N - Na = consr).  d 

*Tauc c a l l s  6 the  chemical p o t e n t i a l .  
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- 1. Undoped Material 

For undoped material, equation B4 y i e l d s  The condi t ion  of s e l f -  

consistency may then be writ ten as 

d2 ' 
2 dx 

-- *< 1. c 

S u b s t i t u t i n g  the value of $i from equation (B3) w e  have 

kTe d 1 
e n  

2 E - Ef - EG/2 
(S) << 1 - kTE: d C 

2 2 kT ) -2 dx Nc dx Nv 
i e n dx i 

To keep t h e  s i t u a t i o n  from becoedng 

of band edges w i l l  be assuared; this 
over ly  complicated, a l i n e a r  v a r i a t i o n  

e l i d n a t e s  t h e  second d e r i v a t i v e  of 

E 

case, dEf/dx = 0. 

and EG from equation 37. Also, s t n c e  we are cons ider ing  the  equ i l ib r ium 
C 

Thus we are l e f t  w i th  

N 
2 d  - 

2 where L - (k t c / e  n i ) l l 2  i s  c a l l e d  t h e  Debye length. I f  w e  assum a l i n e a r  

v a r i a t i o n  i n  N ~ / N ~ ,  i.e. 
i 

NC Nc + (--) Nc - = \" 
NV v o  Nv 1 

where Lio is constant and is  equal t o  the Debye length somewhere in t h e  graded 

reg ion ,  then t h e  se l f -cons is tency  condi t ion  becomes 

l 2  

I n  o t h e r  words, i f  Nc/NV changes only a l i t t l e  i n  a Debye length and i f  t he  

depar tures  of E and Ev from l i n e a r i t y  are small i n  a Debye length ,  then the  
C 
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undoped graded-gap region may be t r e a t e d  by the  quasi-neutral  assumption. 

pointed ou t  in t he  au thor ' s  M.S. t h e s i s ,  none of these  are d r a s t i c  * 
assumptions. 

2. Uniformly Doped Material 

The second case t o  be t r e a t e d  i s  t h a t  of Nd-Na = constant  and l a rge  

enough so t h a t  

almost-constant Nc/NV a r e  again assumed, the  s i t u a t i o n  is exac t ly  the  same 

as t h a t  t r e a t e d  by Jonscher,  p. 1 5 4 ,  the  condi t ion f o r  self-consis tency is 

t h a t  the  r e l a t i v e  change i n  E with in  an e x t r i n s i c  Debye length 

This means 

>> 1 everywhere. I f  an almost- l inear  bandgap and an 

* 
LN be small. 

but  

dNC -1 d i  
dx 

d (e) = - 1  N (- - dEG - - 1 
N -N 

- a -  
2kT dx Nc dx dx i 

To es t imate  the  r e l a t i v e  s i z e s  of these  terms, i t  is again assume t h a t  mn 

is  propor t iona l  t o  EG. The term l / N c  dNc/dx then becomes 3/2 l/EG dEG/dx 

and 

3kT - dEG 
-(1--) CIS - a -  

EG dx 2kT dx 

The se l f -cons is  tency condition then becomes 

2kT dx 

As long as EG > kT, t h i s  w i l l  be s a t i s f i e d  i f  

2 = L i / N  2 -  = ekT/e 2 n where n 

3/2 and Nv = const  x m 3 /2 ,  (Nc/NV) = cons t  (mn/mp) Since Nc = const x m 

Nd - Na. 
3/2 . 3 

n P 
Then i f  w e  make t h e  assumption discussed i n  Appendix A t h a t  the e f f e c t i v e  
masses are each proport ional  t o  the  energy gap, the  r a t i o  (Nc/Nv) would 
indeed be constant.  
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That i s ,  t h e  change i n  bandgap i n  the space of an e x t r i n s i c  Debye length  

must be much less than kT. 

doping of 1017 

t h a t  EG changes by 1.5 e v  i n  

Debye length i s  a l i t t l e  less than 1/10 kT. 
preserved. Smaller band-gap gradients and heav ie r  doping improve the  

assumption. 

As an example of what a l l  t h i s  means, i f  a t  room temperature and a 
$ i s  approximately cm f o r  CdTe. I f  w e  assutm 

(10 microns) then the  change i n  Ec i n  one 
Quasi-neutral i ty  is j u s t  ba re ly  

It i s  i n t e r e s t i n g  t o  no te  t h a t  although quas i -neu t r a l i t y  i n  the above 

example w a s  v a l i d  only f o r  t r a n s i t i o n  widths  g r e a t e r  than 10 microns, t he  

effective-mass treatment and t h e  r e s u l t i n g  fo rce  expressions are v a l i d  f o r  

t r a n s i t i o n  widths of 1/10 micron and probably less. 

perhaps worthwhile t o  consider i n  the f u t u r e  o the r  ways of ob ta in ing  t h e  

p o t e n t i a l  d i s t r i b u t i o n  bes ides  t h a t  of assuming quas i -neut ra l i ty .  

Thus i t  is  v a l i d  and 
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1.6 L i s t  of Symbols 

B =  

Dn 
D *  
P 

D* = 

= 

¶ 

EC 

*f = 

EV 

E =  
Fe 

Fh = 
g =  
- h =  

H =  

E =  
g 

P 

= 

I X ’  I y  

magnetic f i e l d  s t r e n g t h  

e l e c t r o n  d i f fus ion  cons tan t  

ho le  d i f fus ion  constant 

e f f e c t i v e  d i  f f us ion  cons t a n  t 

conduction band edge 

equi l ibr ium Fermi l e v e l  

energy gap 

valence band edge 

electric f i e l d  s t r e n g t h  

force on e l ec t rons  

force on holes 

rate of generation of excess c a r r i e r s  

h/2n = Planck’s cons tan t  

H a m i  1 t oni  an 

= c u r r e n t s  

= e lec t ron  cu r ren t  d e n s i t i e s  Jnx’ Jny 
J J * hole  current d e n s i t i e s  

k = Boltzmann constant 

kx,ky,kz - wave vectors 

PX’ PY 

lkl - k2 + k2 + k: 
X Y  

L = d i f f u s i o n  length 

m* = e f f e c t i v e  mass 

m = e f f e c t i v e  mass of e l e c t r o n s  

= e f f e c t i v e  mass of holes  
e 

n = t o t a l  e l ec t ron  concentration 

n = equi l ibr ium e l e c t r o n  concent ra t ion  

An = excess e l ec t ron  concent ra t ion  
0 

312 2rm kT 

h 
= 2 ( - - - )  = e f f e c t i v e  conduction band edge dens i ty  

NC 

NV = 2 (  
2vmhkT 312 

) = e f f e c t i v e  valence band edge dens i ty  
h2 

. 



t 
Na 

Nd = 
P *  

f 

P O  
AP = 

? ; p  

QO 
a 

9 -  

t =  

acceptor concentration 

donor concentration 

t o t a l  ho le  concent ra t ion  

equi l ibr ium ho le  concentration 

exces s ho le  con cen t r a t i o n  

momentum 

inc iden t  photon f l u x  

su r face  recombination ve loc i ty  

length of graded region 

= t e rmina l  vo l tages  vy 
w - width of sample 

x,y, z - Cartesian coord ina tes  

Y = - In p/NV 

6 = -  In  n/Nc 

e - d i e l e c t r i c  cons tan t  

II = e f f i c i e n c y  

9 = BI.I - Hal l  angle 

X - wavelength 

"n 

pP 
p* = e f f e c t i v e  mobili ty 

p = charge dens i ty  

u = conduct iv i ty  

7 = r e l axa t ion  time 

= e l e c t r o n  mobili ty 

= ho le  mobili ty 

= excess carrier l i f e t i m e  

+ = e l e c t r o s t a t i c  p o t e n t i a l  

Ji = e l e c t r o n  wave func t ion  

'1 
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JAMES CONLEY 

CHAPTER 2 

THE OPTICAL ABSORPTION EDGE IN CADMIUM TELLURIDE 

2.0 In t roduct ion  

Deta i led  measurelnents on the  temperature and energy dependence of o p t i c a l  

absorp t ion  nea r  the fundamental edge i n  CdTe have been performed. The process  

which w a s  hypothesised on the  b a s i s  of  prel iminary measurements, i.e., absorp- 

t i o n  of photons by exc i tons  wi th  a s s i s t a n c e  from LO phonons, has been 

c onf i rme d . (') 
of  a band s t r u c t u r e  model which has a "d i rec t"  forbidden energy gap i s  a l s o  

confirmed. These cons idera t ions  are cons i s t en t  with the  r e s u l t s  of D.T.F. 

Marple and B. Segal l  i n  t h e i r  independent i n v e s t i g a t i o n  of t h e  o p t i c a l  

One s i g n i f i c a n c e  of t h i s  i d e n t i f i c a t i o n  i s  t h a t  the ex i s t ence  

p rope r t i e s .  (2,3) 

2.1 Experimental Considerations 

P rec i se  measurements of  both energy and temperature are required.  The 

s e n s i t i v i t y  with r e spec t  t o  temperature arises because the  magnitude of the  

e f f e c t  i s  propor t iona l  t o  the  (Bose) occupation p r o b a b i l i t y  of  t he  LO phonon 

modes, i .e.,  

- 8/T = e  1 
e -1 

- 
n -  

where 

i s  the  "temperature" of the  modes. 

absorpt ion c o e f f i c i e n t  varies over  several orders  of  magnitude i n  an energy 

range comparable t o  the LO phonon quantum 

Further ,  t h e  magnitude of t h e  o p t i c a l  

h t o  = k e  = .0213 ev. 

This n e c e s s i t a t e s  both p r e c i s e  measurement of t he  photon energy and 

e s t a b l i s h e s  the  requirement of high r e so lu t ion .  

To e s t a b l i s h  isothermal  condi t ions a t  the  low temperature required,  an 

o p t i c a l  c r y o s t a t  was cons t ruc tured  i n  which the  sample w a s  immersed i n  helium 

exchange gas. 
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2.1.1 The o p t i c a l  c ryos t a t  

A metal helium dewar of  commercial manufacture(4) was modified t o  

provide a low temperature environment around and access t o  the  t ransmission 

sample. The d e t a i l s  of t h i s  a r e  represented i n  Figure 2.1. The sample on 

i t s  support ing s t r u c t u r e  f i t s  i n t o  the  inne r  most tube. This tube is  f i l l e d  

with helium gas. The gas i s  cooled by contact  with the  lower s e c t i o n  of t he  

tube which i s  made of copper. Provision i s  made t o  cool t he  tube through 

a thermal "leak" t o  the  helium re se rvo i r  and t o  add h e a t  e l e c t r i c a l l y  f o r  

the purpose of ad jus t ing  temperature. For economy, the  "heat leak" was 

made of annealed copper wire which has a negat ive c o e f f i c i e n t  of thermal 

conduct ivi ty .  The thermal time response of the  system is  long, on the  order  

of 15 minutes. Automatic cont ro l  means were not required.  The systemwas 

capable of opera t ing  i n  a constant power mode f o r  20 minutes wi th  & . S o  

maximum thermal f luc tua t ion .  Equilibrium is  es t ab l i shed  i n  15 minutes. 

There is, however, an add i t iona l  f a c t o r  which con t r ibu te s  t o  t h i s  performance. 

The h e a t e r  r e ~ i s t o r ' ~ )  has a negative c o e f f i c i e n t  of e l e c t r i c a l  resistance 
and is suppl ied  from a r e l a t i v e l y  high impedance source.  This arrangement 

proved use fu l  both i n  reaching and maintaining the  requi red  equi l ibr ium. 

The support ing s t r u c t u r e  was  provided with nylon brushings t o  prevent 

excessive communication of h e a t  from the  ambient. A low temperature of 

16°K could be a t t a i n e d  i n  the  exchange gas mode. Liquid helium t r ans fe r r ed  

d i r e c t l y  i n t o  the  inne r  tube provided an o p t i c a l l y  q u i e t  4.2+OK environment. 

Optical  windows were of Pyrex which is  a s a t i s f a c t o r y  t ransmission 

medium i n  the  .8 micron wavelength range. 

Kovar of Pyrex s e a l ( 6 )  of commercial o r ig in .  

mismatch w a s  encountered with t h i s  type of window. Helium could be pumped 

t o  below the  A po in t  without experiencing a supe r f lu id  leak. 

The "cold window" w a s  a reworked 

No d i f f i c u l t y  with thermal 

A r ad ia t ion  s h i e l d  which i s  made of heavy-walled copper tube and i s  

cooled by contac t  with the  l i q u i d  n i t rogen  r e se rvo i r  surrounds the  inne r  

tube. S l i t s  were mil led i n  t h i s  s h i e l d  t o  provide o p t i c a l  access. 

The sample i s  exposed t o  ambient r ad ia t ion  over .7% of the  t o t a l  s o l i d  

angle.  
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2.1.2 Thermocouple thermometry 

A premium grade Copper-Constantan t h e r m o c o ~ p l e ( ~ ) w a s  c a l i b r a t e d  wi th  

respec t  t o  normal poin ts  of melting ice, b o i l i n g  helium and b o i l i n g  ni t rogen.  

The reference da ta  of Powell e t  a1.(8) cor rec ted  with a quadra t i c  funct ion 

based on t h i s  Cal ibra t ion  was used f o r  i n t e rpo la t ion .  

2.1.3 Spec t ra l  c a l i b r a t i o n  

The monochrometer w a s  ca l ib ra t ed  aga ins t  emission l i n e s  from a cesium 

lamp. Establ ished wavelength values were converted t o  t h e i r  equivalent  

energy by the  r e l a t i o n  (10) 

1.23978 
h(P) 

E(ev.) = 

The g r a t i n g  employed was nominally ru l ed  a t  1200 l i n e s  p e r  m. The 

t h e o r e t i c a l  dependence of energy on micrometer drum number, N, i s  

I 
E(N) s i n  A ~ ( N - A ~ )  

(The g ra t ing  angle i s  very near ly  propor t iona l  t o  the  drum number, N.) 

A least square e r r o r  f i t  ( I2 )  of 9 c a l i b r a t i o n  poin ts  t o  t h i s  dependence 

The c a l i b r a t i o n  d a t a  and parameters y ie lded  a s tandard  e r r o r  of +.00007 ev. 

obtained a re  shown i n  Table 2.1. The parameters so obtained were used i n  

subsequent i n t e r p o l a t i o n  

2.1.4 The exc i ton  pos i t i on  

The temperature dependent of t h e  lowest exc i ton  energy i s  required i n  

normalizat ion of the  reduced data. This is  known from emission and r e f l ec -  

t i o n  measurements. ( I3)  

were f i t  empir ica l ly  wi th  the  function 

For the  purpose of i n t e rpo la t ion ,  the  known pos i t i ons  

2 112 E(ev.1 = B1 - [B2 + B3 T (OK)] 

A least equare 

shown i n  Table 

e r r o r  of .0002 ev. w a s  obtained f o r  t he  d a t a  and parameters 

2.2. 
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Drum Number 

1 .278  

2 .531 

3 .158 

3.710 

7.615 

9.766 

11 .414 

13.505 

13 .839 

Parameters Obtained 

A1 = .72389922 

A2 = .00754939 

Ag = 61.3600482 

Energy i n  ev.  o f  C s  l i n e s  

I. 5894152 Rb impurity 

1.56062 79 

1.5466876 

1.5345764 

1.4549529 

1.4150510 

1.3862358 

1.3516654 

1.3463489 

Table 2 .1  C s  cal ibration data and parameters for  spectral  
cal ibration of  1200/mm grating i n  a Perkin- 
Elmer model 99G monochrometer 



I -  

, .  

Temperature 
(OK) 

2.1 

24. 

39. 

63. 

80. 

90 e 

102. 

115. 

130. 

Parameters 

= 3.155764788 

= 2.434919089 

= .0000048787 

B1 

B2 

B3 
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Excf ton Energy 
(ev.) 

1.5955 

1 5946 

1.5930 

1.5890 

1 5848 

1.5827 

1.5794 

1.5750 

1.5691 

Table 2,2 Exciton energy i n  CdTe vs. temperature and parameters 
of an empirical  func t ion  f o r  purposes of i n t e r p o l a t i o n .  
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2.1.5 Aquisit ion,  reduction, and normalizat ion of the  experimental  da t a  

The physical process hypothesised dominates i n  determining the observed 

dependence of op t i ca l  absorpt ion on energy and temperature. A demonstration 

of t h i s  i s  e f f ec t ed  by a systematic  procedure of reducing an normalizing the  

experimental  data. 

Absolute transmission values were measured by a sample-in, sample-out 

method f o r  severa l  sample of various thickness ,  Fac to r i a l  d a t a  was obtained 

as a continuous record of t ransmi t ted  i n t e n s i t y  vs. wavelength drum number 

f o r  s e v e r a l  temperatures (thermocouple vo l t ages ) ,  S imi la r ly ,  a continuous 

record of t ransmit ted i n t e n s i t y  f o r  the  sample-out condi t ion w a s  a l s o  taken 

t o  provide reference values,  This w a s  taken on a r e l a t i v e  sca l e .  Normaliz- 

a t i o n  w a s  provided by a s i n g l e  sample-in, sample-out measurement a t  a f ixed  

wavelength drum number f o r  each sample and temperature involved. Because 

of t he  convenient appearance of wavelength markers a t  each 0.1 drum number, 

t h i s  was adopted as  the mesh i n  sampling the  continuous record.  A da t a  

poin t  results at about every 0.0023 ev. i n  energy. 

The l a rge  amount of da t a  generated and the  requirement of r e t a i n i n g  

the  p rec i s ion  inherent  i n  the  measurements necess i t a t ed  the  app l i ca t ion  of 

d i g i t a l  computer techniques. To i l l u s t r a t e  the  method, a sequence of four  

graphical  f igures  has been prepared. The sample chosen f o r  t h i s  example i s  

one of f ive  f o r  which de ta i l ed  results a r e  reported.  This p a r t i c u l a r  sample 

w a s  chosen i n  order t o  demonstrate both the  range of agreement with an 

e x i s t i n g  theory and the departure  from agreement. 

In reducing the experimental da ta ,  the  quan t i ty  of physical  i n t e r e s t  

required is the  temperature dependent component of the  bulk absorpt ion as 

a funct ion of photon energy, hu. The sur faces  of the  samples are 

chemically prepared. This r e s u l t s  i n  an i r r e g u l a r  sur face .  A discussion 

of the motivation f o r  t h i s  prepara t ion  appears  i n  s e c t i o n  2.1.6. One 

consequence of t h i s  i s  t h a t  the  mult iple  r e f l e c t i o n  co r rec t ion  required 

i n  obta in ing  accurate values of the  absorption c o e f f i c i e n t  f o r  small  

losses  i s  not  readi ly  appl ied.  However, t h i s  information i s  not  required 

as an intermediate  quant i ty  i n  obta in ing  the r e s u l t  of importance. 

The f i r s t  s tep  i n  the reduct ion i s  t o  process the  experimental  d a t a  

t o  produce values of the absolute  transmission as a funct ion of photon 

energy and temperature, i.e., 
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Next, values of t he  funct ion 

are computed. The r e s u l t s  of t h i s  are shown i n  Figure 2.2. Also shown are 

pos i t i ons  of the exc i ton  fo r  the  temperatures of measurement. 

The temperature dependence a r i s i n g  from the  s h i f t  of the  exci ton (o r  

a l t e r n a t e l y  s t a t e d ,  t he  band gap) is removed by normalizing the  observed 

absorpt ion with respec t  t o  energy. This i s  most conveniently done by 

in t roducing  the coordinate  

A = Eo(T) - hv 

The r e s u l t s  so obtained are shown i n  Figure 2.3. 

The remaining temperature dependence of t he  absorpt ion at 41.7, 57.1, 

and 72.&K, is propor t iona l  t o  the  (Bose) occupation p robab i l i t y  of t he  LO 

phonon modes, n. This can be demonstrated i n  a sequence of two operat ions.  

The temperature dependence which appears i n  comparison of the  4.2 and 29.2'K 

da ta  i s  f i n i t e  bu t  f a r  too small  t o  be propor t iona l  t o  i. For t h i s  reason, 

the  29.2OK da ta  is considered t o  be  a "background" a r i s i n g  from unspecif ied 

processes.  When these  vaiues a re  sub t r ac t ed  from those of the  h igher  tem- 

pe ra tu res ,  the  r e s u l t s  shown i n  Figure 2 , 4  are obtained. 

- 

In  performing t h i s  subt rac t ion ,  i t  i s  apparent t h a t  the  gradually in- 

c r eas ing  dependence of absorption on energy as shown i n  Figure 2.2 i s  

removed. Another f ea tu re  of t h i s  procedure is t h a t  a cor rec t ion  f o r  r e f l ec -  

t i o n  is e f fec t ed .  This i s  s imi l a r  t o  t h a t  co r rec t ion  which i s  made when the  

absorpt ion values from a t h i n  sample a r e  sub t r ac t ed  from corresponding values  

from a th i cke r  sample. 

That the  component of absorption obtained i n  t h i s  manner i s  propor t iona l  - 
i n  magnitude t o  the  phonon occupation, n,  i s  demonstrated by d iv id ing  by 

and p l o t t i n g  as shown i n  Figure 2.5. 

the  process i n  which exci tons with the a s s i s t ance  of one LO phonon produce 

absorpt ion.  

Also shown a r e  t h e o r e t i c a l  r e s u l t s  f o r  

It is apparent t h a t  the  higher  absorpt ion values converge t o  
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agree with t h i s  theory. However, a component appears below the  pred ic ted  

"one phonon threshold" which a l s o  is observed t o  e x h i b i t  a mgn i tude  which 

i s  propor t iona l  t o  the  occupation p robab i l i t y  of one LO phonon. 

t h i s  pa t t e rn  of behavior was observed on seve ra l  add i t iona l  samples 

f o r  which a composite presenta t ion  is shown i n  Figure 2.6. 

agreement of theory and experiment is s a t i s f a c t o r y  over a s u b s t a n t i a l  range 

of values.  However, i t  is a l s o  apparent t h a t  another process involving one 

LO phonon is e f f e c t i v e  in cont r ibu t ing  i n  the  range of energy below the  

pred i  c ted  threshold.  

The q u a n t i t a t i v e  

For purposes of comparison, the  experimental  r e s u l t s  of D.T.F. Marple 

a re  shown in Figure 2.7.  The only s i g n i f i c a n t  disagreement between the  two 

sets of r e s u l t s  lies in t he  magnitude of the  component of absorpt ion below 

the  threshold.  The q u a l i t a t i v e  dependence, however, appears t o  be s imi l a r .  

The d i f fe rence  of behavior between mater ia l  of d i f f e r e n t  sources suggests  

t h a t  a defec t  of i m p u r i t y  of va r i ab le  concentrat ion is involved. 

2.1.6 Surface preparat ion 

Transmission samples were lapped and then pol ished t o  a f i n a l  f i n i s h  

with 0.5~1 chromium oxide on a s i l k  wheel. However, the  r e s idua l  damage 

causes an observable amount of o p t i c a l  absorption. For t h i s  reason, a sub- 

sequent chemical prepara t ion  was employed. 

concentrated H SO and 7 p a r t s  s a tu ra t ed  K C r  0 [by volume]. (14' A t o t a l  

time of 8 minutes removed approximately 6011 from each s ide .  The last minute 

of e t ch ing  w a s  ca r r i ed  out  in f r e sh  so lu t ion .  

The e tch  cons is ted  of 3 p a r t s  

2 4  2 2 7  

A comparison of two samples with sur faces  which were mechanically and 

chemically prepared in the manner prescr ibed is shown i n  Figure 2.8. There 

is a d i f fe rence  between the  two samples which is much l a r g e r  than could be 

caused by the  approximate means used t o  obta in  the  absolute  bulk absorpt ion 

values.  

A d i f f i c u l t y  a r i s e s  in i n t e r p r e t i n g  the t ransmission da ta  f o r  samples 

with sur faces  which are i r r e g u l a r  as a r e s u l t  of e tch ing .  

t i o n  values,  a mult iple  r e f l e c t i o n  cor rec t ion  must be appl ied.  

a r e  accompanied by a la rge  angular s c a t t e r i n g .  This is c h a r a c t e r i s t i c  of the  

s t a t i s t i c a l  d i s t r i b u t i o n  of angles present  on the  sur face .  S n e l l ' s  law 

p red ic t s  a magnification of these angles by a t  l e a s t  a f a c t o r  i, the  o p t i c a l  

For small absorp- 
The r e f l e c t i o n s  
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Fig. 2.8 COMPARISON OF RESULTS FROM AN ETCHED 
.MA”LE WITH THOSE FROM A POLISHED ONE 
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index, on transmission f o r  the medium. 

The s o l i d  angle subtended a t  the sample p o s i t i o n  by the  access windows 

must, i n  order  t o  minimize h e a t i n g b y  ambient r a d i a t i o n ,  be small. As a 

consequence, some of t h e  transmitted r a d i a t i o n  i s  in te rcepted .  This r e s u l t s  

i n  an imperfect measurement of t h e  absolu te  transmission. The maximum angle 

t h a t  an a x i a l l y  symmetric d i s t r i b u t i o n  of t r ansmi t t ed  r a d i a t i o n  can have, and 

not  be in t e rcep ted ,  is  3.5 degrees. 

2.2 Theore t ica l  Considerations 

2.2.1 The r e l a t i o n  of observed transmission t o  bulk absorption 

For a transmission sample w i t h  plane and p a r a l l e l  su r f ace  t h e  r e l a t i o n  
(15) between absolu te  transmission, t, and s p e c i f i c  bulk absorption aD i s  

r) 

(l-R)L 
2 -aD t =  

e a - R  e 

o r  a l t e r n a t e l y  s t a t e d ,  

1 1  4RL tL 

(1-R) 
aD = log  k& 11 + [l + t 2 

where R i s  the  r e f l e c t i v i t y  a d i e l e c t r i c  d i scon t inu i ty  of n ,  t he  index  of 

r e f r a c t i o n ,  i.e., 

In  recovering the  temperature dependent component of absorp t ion ,  a sub- 

t r a c t i o n  was made i n  o rde r  t o  co r rec t  f o r  t he  e f f e c t s  of r e f l e c t i o n .  Denot- 

i n g  by primes the parameters associated wi th  the  lower temperature t h i s  

procedure w r i t t e n  i n  the formalism of equation 2.2 i s  

aD-a'D = l o g  + l og  
t 4Rl2tV2 'I2 

1 + [ 1 +  1.1 

(1-R' ) 

The quan t i ty  l o g  

aD-a'D i s  the  phys ica l ly  s i g n i f i c a n t  value of importance. 

is e f f e c t i v e l y  t h a t  which i s  d i r e c t l y  observed, and 

The remaining 
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term i n  equat ion 2.4 provides an estimate of t he  e r r o r  i nhe ren t  t o  the  method. 

I n  the  worst  poss ib le  case, i.e., 

t '  = 0 
(1-R) 

tmax = (l+R) t =  

the  s p e c i f i c  e r r o r  i s  

1 / 2  
1 )  

1 4 R2 

2 ( 1-R2) * E = log  - 11 + [ l  + 

With R =: .25 corresponding i n  equat ion 2.3 t o  an index of r e f r a c t i o n ,  n = 3, 

the  error is  

E - 0.0552 

That t h i s  i s  a small e r r o r  can be seen by a simple example. Consider I 
D - .01 cm 

a-a' = 100 cm-I 

which a r e  values  typ ica l  of those used, then the  e r r o r ,  

a = E/D = 5.52 
E 

I 
i n  a worse case est imate ,  i s  of reasonable proportion. 

However, i n  cases s tud ied ,  the  e f f e c t  of mechanical damage has required 

t h a t  chemically prepared sur faces  be employed. I f  a measure of absolu te  bulk 

absorpt ion were required, imperfections pecu l i a r  t o  the  etched su r face  would 

cause a se r ious  problem. For s m a l l  s p e c i f i c  absorpt ion,  a mul t ip le  r e f l e c t i o n  

co r rec t ion  must be made. When the  sur faces  are i r r e g u l a r ,  r e f l e c t i o n  i s  

accompanied by sca t t e r ing .  

sur faces  w a s  ava i lab le ,  t h i s  co r rec t ion  would be formitable .  

Even i f  an exact  s t a t i s t i c a l  desc r ip t ion  of the  

It i s  important, however, t o  understand the  general  f e a t u r e s  of t rans-  

mission through an o p t i c a l  medium which lacks the  i d e a l  geometry of plane and 

p a r a l l e l  sur faces .  Accordingly, a desc r ip t ion  of the  s i t u a t i o n  has been 

formulated i n  s t a t i s t i c a l  terms and a numerical s o l u t i o n  of the  model obtained. 

From t h i s  the  conclusion can be drawn t h a t  the  con t r ibu t ion  t o  the  transmission 

by mul t ip le  i n t e r n a l  r e f l e c t i o n s  i s  r e l a t i v e l y  less important i n  the  case of 
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imperfect  sur faces .  

The problem is formulated phys ica l ly  i n  terms of the  off-normal inc iden t  

of e lectromagnet ic  r ad ia t ion  on a dielectric. 

v a l i d i t y  of geometric op t i c s ,  boundary condi t ions provide vec tor  r e l a t i o n s  

f o r  t he  transmission and r e f l ec t ion .  The medium is  taken t o  be o p t i c a l l y  

i n a c t i v e  so t h a t  an averaging over po la r i za t ions  is a meaningful s impl i f i ca t ion .  

A l a r g e  angular  d i spers ion  upon leaving a medium of high r e f r a c t i v e  index 

arises as a consequence of S n e l l ' s  law. 

Here, wi th in  the  range of 

The s t a t i s t i c a l  f ea tu re s  of  the su r face  are generated by scanning a 

geometric model. 

dovered by "mounds1' of the  ana ly t i c  form 

In  p a r t i c u l a r ,  a su r f ace  is descr ibed as being uniformly 

2 = S(X2 + y2) 

where S i s  a very small constant  = .05. Viewed from wi th in  the medium a 

c ross  s e c t i o n a l  appearance is shown i n  Figure 2.9. 

of incidence,  €Ii, p a r t  of the  su r face  i s  "shadowed". 

po r t ion ,  when scanned by superposing a mesh and eva lua t ing  the  su r face  normal 

vec tors  a t  t he  mesh po in t s ,  provides a s t a t i s t i c a l  d i s t r i b u t i o n .  

When viewed from an angle  

The "il luminated" 

The l o g i c  of t h e  ca l cu la t ion  i s  shown i n  'Figure 2.10. 

of t r a n s m i t i v i t y  which i s  a x i a l l y  symmetric i s  shown i n  Figure 2.11. 

are shown f o r  one value of t he  parameter S and f o r  t he  i n i t i a l  and f i r s t  

o r d e r  of i n t e r n a l  r e f l e c t i o n .  In  the  geometry of Figure 2.9, t h i s  d i s t r i b u t i o n  

i s  in t e rcep ted  by a s l o t .  

The d i s t r i b u t i o n  

Resul ts  

The absolute  t ransmission fo r  the  su r face  parameter ind ica ted  and a s l i t  

angle  €Is = 3.5 f o r  t he  i n i t i a l  and second orders  of t ransmission are 

s = .02 

e = 3 . 5 O  
S 

Order 

0 

1 

Trans mi s s ion  

.3555 

.0088 

This i s  t o  be compared with the  case of p e r f e c t  sur faces  where 
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Order 

0 

1 

Trans m i  s s i on  

.5625 

.0351 

It is  apparent t h a t  both the  magnitude of the  zero o rde r  and the  r e l a t i v e  

magnitude of the  f i r s t  o rder  are l e s s  i n  the  case of imperfect sur faces .  

2.2.2 Contribution t o  the  o p t i c a l  absorpt ion below the  "one phonon threshold" 

The threshold predic ted  by theory a t  one quantum of LO phonon energy 

below the exci ton has been observed t o  be "soft".  

f o r  t h i s  cannot be uniquely assigned. However, the behavior exhib i ted  does 

provide a b a s i s  for  ana lys i s .  The proper t ies  of the  anomolous o p t i c a l  

absorpt ion are: 

The mechanism responsible  

1. The temperature dependence i s  c h a r a c t e r i s t i c  of a one LO phonon 

absorption. 

2. The magnitude of the  e f f e c t  va r i e s  according t o  the  source of 

the  mater ia l .  

From t h i s  two deductions a r e  made: 

1. An op t i ca l ly  a c t i v e  l e v e l  e x i s t s ,  the  e x c i t a t i o n  energy of which 

l ies  below the  lowest exci ton energy. 

2. The o r ig in  of t h i s  l e v e l  i s  assoc ia ted  with a defec t  o r  impurity,  

the  concentrat ion of which can vary. 

The energy of the  l eve l ,  Ei, can be roughly f ixed  as l y i n g  one quantum of 

LO phonon energy, haLo, above the  region of observat ion,  i.e. 

where E is  the exc i t a t ion  energy of the  lowest exci ton.  Al te rna te ly  s t a t e d ,  

the  "binding energy" of t h i s  l e v e l  i s  
0 

- Ei Ed = E 
g 

Numerically, t h i s  binding energy i s  expected t o  be about 

Ed z 0.025 ev. 

where, f o r  purposes of  comparison, the  binding energy of t he  lowest exci ton 

is  about 
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E = .01 ev. 

: -  

I .  

Since the  binding energy i s  small, the  l e v e l  may be descr ibed i n  terms of 

e f f e c t i v e  mass p a r t i c l e s .  (I6) 

having a binding energy with respect  t o  the  valence band edge less than t h a t  

of the  C, vacancy, 0.15, ev., t he  center  involved i s  not  an acceptor.  However, 

Since the re  are no known acceptor  l e v e l s  

D e  Nobel quotes a poss ib le  donor l e v e l  a t  0.0222 .002 ev. Since the  

hydrogenic model of a s i n g l e  charged donor p red ic t s  a binding energy of about 

.01 ev., h i s  l e v e l  probably a r i s e s  from a doubly charged cen te r  i n  analogy 

with atomic He,  (I8)  

energy of about 0.025 ev. 

The shallow l eve l s  of such a cen te r  would have a binding 

In  the  absence of more de ta i l ed  information, and approximate model f o r  

the  purpose of es t imat ing  an o p t i c a l  matr ix  element is  taken t o  be t h a t  of 1s 

hydrogen. 

a center, two disposable  parameters are required,  Ed the  binding energy of 

the level  and, nd, i t s  concentration. 

i .e.,  i n  the  absence of phonon assis tance.  Dumke has considered t h i s  case,  

i n  d e t a i l .  I n  the  second order  case, the  valence band provides i n i t i a l  

states, and the  conduction band the in te rmedia te  states. The f i n a l  states 

are e l ec t rons  bound t o  the  donor center .  This process is schematical ly  

i l l u s t r a t e d  i n  Figure 2.12. 

In  a q u a n t i t a t i v e  ca l cu la t ion  of the  absorpt ion a r i s i n g  from such 

Trans i t ions  from a l l  valence band states a r e  allowed i n  the  f i r s t  o rder ,  

Bound l e v e l s  contain components from a l l  Bloch s t a t e s .  In  the  e f f e c t i v e  

mass approximation the  hydrogenic wavefunction f o r  t he  model assumed i s  

-1 /2  -'/av 
u c w  e 

3 
Jl(r) = (ma,) 

This can be expanded as 

where 4, may be found by Fourier  t ransformation as 
C 

= 8 (na;/V)'l2 (1 + a 2 k 2 -2 
d c  

C 
4( 
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Derivat ion of o p t i c a l  absorption by second o rde r  pe r tu rba t ion  theory 

r equ i r e s  c a l c u l a t i o n  of mat r ix  elements connecting i n i t i a l  and in te rmedia te  

then in te rmedia te  and f i n a l  states and a subsequent summations over the 

dens i ty  of i n i t i a l  states 
s ta te  wavefunctions are 

and over f i n a l  states. The i n i t i a l  and in te rmedia te  

and 

The photon i n t e r a c t i o n  Hamiltonian is 

= pz e H(hv) = - - m (2nv) 

and t h e  corresponding matr ix  element is  

e 2 = - -  
m (2nv) 'cv *k ' kv 

C 

The f i n a l  state wave func t ion  is 

and the  LO phonon i n t e r a c t i o n  Hamiltonian is  

1 .iq"P 
H ( h t O , T )  = H'(huLO,T) - 4 

where 

The mat r ix  elenrent is 
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= H' 8(7~a:/V)'/~ (1  + ad 2 ki) 2 -2 
*f i  

The t r a n s i t i o n  r a t e  a r i s i n g  from a l l  LO phonons of the  spectrum i s  
9 
L 

h I H f i  Eio-hv I (EfO+ + t o )  
2 

Q i  
Wif  = - 

The summation may be converted t o  i n t e g r a t i o n  by 

The dens i ty  of i n i t i a l  s tates,  valence band e l ec t rons ,  is 

whe re 

K2 k2 
E = -  V 

2% V 

The number of f i n a l  states i s  i n  the  limit of zero (Fermi) occupation 

N d = n V  d 

The r e s u l t i n g  expression f o r  the  o p t i c a l  absorpt ion w r i t t e n  i n  a normalized 

form is 

1 ad(hv,T) = a 
do hwLO/kT 

(e -1) 

E - Ed + h t o  - h 1 /2 

Eg - Ed 
OD 

1 
2 4 [ ( x - x ' ) ~  + AI2[(x-x') + 11 

dx 

0 
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I -  

8nad 3 
2 hv . - e -  2n e 2 & z 2  2 -  

2 Ipcvl v m 
2 - a 

do n CE & h m (2rv) 
0 2  

hw LO 1 1 
e e' - ( - -  -1 a: 2v E- 

'S 

l /2 2% 3/2 
2 ( -2 ) 

2 2  

(Eg - Ed) 
1 e -  

(2r)  h 

n V  2 3  d 
d 271 a 

A =  (Es - Ed - hv) 
E2 

and 

1/2 (Eg - Ed + hw ) LO x ' = a k =  d v 62 

Numerical means were employed t o  eva lua te  the  expression, To e f f e c t  a 
comparison with the  process involving exc i tons  a common energy coordinate  

is required.  Consider 

A '  E - Ed - hv = Ei - hv 
g 

as a measure of photon energy w i t h  respec t  t o  the  d i r e c t  exc i t a t ion .  

s i m i l a r  quant i ty  

A 

A = E - E  - h v = E  - h v  g x  0 

appears i n  the  process involving excitons.  In  terms of A as the  common 

coordinate  of energy 

A' P Ed - Ex 4- A 

The temperature dependences a r e  t h e  two process are the  same and a f u l l y  

normalized form 
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can be similarly be  employed. The r e s u l t s  of eva lua t ion  f o r  t he  parameters 

Ed = .022 ev. 

n = 2.5 x 10 c m  15 -3 
d 

presented i n  the normalized form along with the  corresponding quan t i ty  f o r  

the process  involving exc i tons  is shown i n  Figure 2.13. Also shown i s  a l i n e  

which represents  the  dependence of the  e f f e c t  observed experimental ly  and 

previously reported i n  d e t a i  1. 

A unique i d e n t i f i c a t i o n  of the  mechanism a c t u a l l y  involved cannot be 

made. Thus, t h i s  ca l cu la t ion  series pr imar i ly  t o  show how s e n s i t i v e  the 

presence of a sharp threshold  i s  t o  a r e l a t i v e l y  small concentrat ion of 

donors having the p rope r t i e s  descr ibed.  However, a level a c t u a l l y  e x i s t s  

wi th  the  binding energy required.  

I n  a sample of r e l a t i v e l y  poor o p t i c a l  q u a l i t y ,  a l i n e  s t r u c t u r e  was 

observed. Further,  the observed s t r u c t u r e  did show a magnetic f i e l d  depend- 

ence. The o p t i c a l  absorpt ion f o r  the  sample i n  ques t ion  is  shown i n  Figure 

2.14. The pos i t ions  of the (weak) absorpt ion peaks which appear as "humps" 

on a monoto?.ically inc reas ing  background are 

Ep(0) = 1.584 2 .001 

E ( 5 w / m  ) = 1.586 - + .0005 2 
P 

With an exc i ton  energy, E = 1.5955 5 .0005 ev., and a binding energy of 

Ex = .01 f. .001 ev., the  binding energy of the  observed l e v e l ,  Ed, is  
0 

Ed = Eo + Ex - Ep(0) 

= 0.0215 .0025 

Thus the  presence of an o p t i c a l l y  active l e v e l  having an energy cons i s t an t  

with t h a t  of t he  model previously assumed is demonstrated. 
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o zero magnetic f i e l d  

0 50,000 Gauss 

B2081 

17 OK. 

1.575 1.58 1.585 1.59 
hv (ev.) 

Fig. 2.14 OBSERVATION OF A N  ANOMALOUS MAGNETO-OPTICAL EFFECT 

' -  

I .  
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7. Thermo E l e c t r i c  Co., Inc. ,  Saddle Brook, N . J . ,  premium grade copper- 
I constantan thermocouple w i r e  N/N-36-DDTe 
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NGUYEN DUC CUONG 

CHAPTER 3 

A MULTI-TRANSITION PN JUNCTION PHOTOVOLTAIC CELL 

3.0 In t roduct ion  

High e f f i c i ency  s o l a r  cells can be achieved with a proper ma te r i a l  which 

provides a good match t o  the  s o l a r  spectrum. Direc t  t r a n s i t i o n  processes  

make use only of photons with energy equal  t o  o r  h igher  than the  energy gap. 

I n d i r e c t  t r a n s i t i o n  processes ,  made poss ib l e  by t h e  presence of impurity 

levels i n  the  forbidden gap, can absorb low energy photons and b r i n g  them 

t o  the  conduction band. 

The b a s i c  problem is  the study of  the  re levant  proper t ies  of  the  material, 
such as impurity concentrat ion and loca t ion  i n  the  forbidden gap, capture  

c ross  sec t ion ,  and the  engineer ing of t he  most favorable material i n  order  

t o  achieve the  maximum ef f ic iency .  L i t t l e  is  known about the  physical  

p rope r t i e s  of t r aps  de l ibe ra t e ly  added t o  the  mater ia l ,  e spec ia l ly  high 

concentrat ion t r aps  

3.1 The Material 

CdS has been chosen as the most s u i t a b l e  material. Workers i n  the  

f i e l d  have reported an e f f i c i ency  as high as 7 o r  8 percent  with s o l a r  cells 

made out  of CdS. CdS s i n g l e  c r y s t a l s  a r e  orange i n  co lor  and very photo- 

s e n s i t i v e .  They can be handled e a s i l y  and are not  b r i t t l e .  Some prope r t i e s  

of CdS a re  l i s t e d  below: 

Available 

promise 

Energy gap : 2.42 ev. a t  300'K 

H a l l  mobil i ty  : 300 c m  / v o l t  sec at 300'K 
R e s i s t i v i t y  : 1 t o  100 ohm-cm (bought from Clevite Corp.) 

Melting po in t  : 148OOC 

Ef fec t ive  mass of free carriers: .2m f o r  e l ec t rons  

2 

e 
2. lme f o r  holes  

da t a  on impuri t ies  i n  CdS shows t h a t  the  material has much 
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3.2 Contact Makinp and Sample Preparat ion 

The c r y s t a l s  a r e  cut by sandblas t ing  t o  1 mm x 2mm x l O m m ,  then cleaned 

with acetone and d i s t i l l e d  water. Ohmic contac ts  can be obtained with 

indium. An u l t r a son ic  so lde r ing  i r o n  gives b e t t e r  r e s u l t s  than e l ec t ro -  

p l a t ing .  Indium does not  addhere w e l l  a t  f i r s t ,  and very high contact  

r e s i s t ance  a r i s e s .  I f  the  hea t  i s  appl ied  long enough, the  contac t  r e s i s t ance  

can be observed t o  decrease d r a s t i c a l l y  from about l O O K  t o  50 ohms. The 

so lde r ing  i r o n ,  the so lde r  and the  sample should be very clean i n  order  t o  

insure  ohmic contacts  which can be t e s t e d  on a curve tracer. A s t r a i g h t  

and symmetric c h a r a c t e r i s t i c  means t h a t  the  contac ts  a r e  ohmic. 

3.3 H a l l  Measurements 

H a l l  measurements have been performed i n  order  t o  determine c a r r i e r s  

concentrat ion,  h a l l  mobili ty and conduct ivi ty ,  a t  room temperature and as a 

funct ion of temperature, from l i q u i d  n i t rogen  t o  room temperature. 

The r e s u l t s  agree with published data .  The r e s i s t i v i t y  has been found 

t o  be 3.0 ohmcm a t  room temperature. Such a low r e s i s t i v i t y  is  favorable.  

The p l o t  of mobili ty a s  a funct ion of temperature shows t h a t  imperfection 

s c a t t e r i n g  i s  dominant ( V ~ T ~ ’ ~ ) .  
the  carrier concentration i s  10 / c m  

The mater ia l  i s  s t rong ly  n-type. A t  77’K 
15 3 

3.4 Photoconductivity 

Trapping ac t ion  and recombination processes  can be s tud ied  using the  

re laxa t ion  k i n e t i c s  of the photocurrent and i t s  s teady s ta te  under the  

e x c i t a t i o n  of shor t  l i g h t  pulses .  A t yp ica l  osci l logram of the  photocurrent 

i s  as  sham.  

t 
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It can be observed tha t  there  are  two d i s t i n c t  decay time constants :  

One very s h o r t ,  of the order  10 microseconds, comparable t o  the  decay time 

of the l i g h t  pulse  which makes it hard t o  draw any conclusion, the  second 

decay time i s  of t he  order  20 mill iseconds.  

high i l lumina t ion  shows a s t rong  d i f fe rence  between the  two regions. These 

observat ions agree with the  r e s u l t s  found by o the r  workers (Soviet  Physics- 

Sol id  State, Vol. 5, no. 2, Aug. 1963 p. 289 and no. 1 July ,  1963 p. 174). 

It is a l s o  observed t h a t  only 

3.5 Some Conclusions 

There i s  some f a s t  ac t ion  due t o  shallow t r aps .  A t  l o w  l e v e l  e x c i t a t i o n ,  

t r a p  concentrat ion i s  high enough to recapture  a l l  f reed  e l ec t rons ,  only 

one decay t i m e  i s  observed. A t  high l e v e l  exc i t a t ion ,  deeper t r aps  come 

i n t o  play. When a l l  shallow t r aps  have been f i l l e d ,  e l ec t rons  a r e  captured 

by deeper ones, giving rise t o  a much longer decay t i m e .  

We are i n t e r e s t e d  i n  those deep t r a p s  and would l i k e  t o  inves t iga t e  

f u r t h e r  on t h e i r  na ture .  An experiment s h a l l  be designed t o  l e a r n  about 

t h e i r  loca t ion ,  t h e i r  capture  cross-section and t h e i r  concentration. I f  

they prove t o  be e f f e c t i v e  photon-interaction centers  and s tepping  s tones  

f o r  e l ec t rons  from the  valence band, poss ib l e  ways of incorpora t ing  them 

i n t o  the mater ia l  s h a l l  a l s o  be inves t iga ted ,  
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CHAPTER 4 

THERMAL AND ELECTRONIC TRANSPORT PROPERTIES OF Z I N C  ANTIMONIDE 

4.0 In t roduct ion  

Zinc antimonide i s  an an i so t rop ic  semiconductor wi th  good thermoelec t r ic  

c h a r a c t e r i s  t ics i n  the moderate temperature range. 

The objec ts  of  t h i s  work are t o  gain information about the b a s i c  e l e c t r o n i c  

conduction processes i n  ZnSb through thermoelec t r ic  and galvanomagnetic 

s t u d i e s  of s ing le  c r y s t a l  samples and t o  empir ica l ly  eva lua te  the thermo- 

e l ec t r i c  p rope r t i e s  of ZnSb nea r  room temperature. 

Large s ing le  c r y s t a l s  of  ZnSb have been produced. Copper i s  used as an 

acceptor  dopant. A number of a t tempts  t o  produce n-type ZnSb by doping 

wi th  A l ,  Se, o r  I n  have f a i l e d .  A l l  e lectrical  and thermal measurement 

programs are progressing s a t i s f a c t o r i l y .  Thus f a r ,  measurements on t h i s  

orthorhombic semi conductor i n d i c a t e  no anisotropy i n  the  thermoelec t r ic  

power, about a 20 percent  v a r i a t i o n  i n  the thermal conduct ivi ty ,  and a 200 

percent  va r i a t ion  i n  e l e c t r i c a l  conduct ivi ty  between the  th ree  p r i n c i p a l  

axes. Due t o  the r e l a t i v e l y  l a rge  anisotropy i n  the  electrical  conduct ivi ty ,  

e l ec t r i c  and thermal cu r ren t s  should be along the  "c" ax i s  of the  c r y s t a l  

t o  give the  l a r g e s t  thermoelec t r ic  f i g u r e  of merit. 

4.1 Macroscopic Symmetry Considerations i n  the  D2h Point  Group 

It i s  obviously important t o  have a knowledge of the  number of independ- 

e n t  t enso r  elements required t o  cha rac t e r i ze  the  phys ica l  p rope r t i e s  of a 

c r y s t a l l i n e  material before  measurements are begun. Using symmetry con- 

s i d e r a t i o n s ,  Nye") has tabula ted  the  poss ib l e  non-zero t enso r  elements 

f o r  t he  common physical  p rope r t i e s  of c r y s t a l s  i n  each of t h e  32 po in t  groups. 

This t abu la t ion  does no t  include p rope r t i e s  which re la te  t o  dependence 

upon magnetic f i e l d  s t rength .  Reed and Marcus") have publ ished the non- 

zero  t enso r  coe f f i c i en t s  of an expansion of t h e  e lectr ical  r e s i s t i v i t y  up 

t o  second o rde r  i n  magnetic f i e l d  S t rength  f o r  t he  D po in t  group. In  

the  p r i n c i p a l  coordinate system of t he  cryse.al, t he re  are 3 independent 

zero magnetic f i e l d  r e s i s t i v i t i e s ,  3 independent Hall c o e f f i c i e n t s  (when 

Onsager symmetry is included) ,  and 12 independent magnetoresistance 

coe f f i c ien  ts . 

2h 
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Since higher  order  terms may appear i n  the  experimental  da ta ,  a cal- 

c u l a t i o n  of a l l  of the  poss ib l e  non-zero tensor  c o e f f i c i e n t s  i n  a phenomeno- 

l o g i c a l  expansion i n  the  magnetic f i e l d  of a second rank tensor  was made 

f o r  t he  D2h point  group. 

of 4 th  order  i n  magnetic f i e l d .  

I 

The ca l cu la t ion  includes terms up through those 

The r e s u l t s  of t h i s  ca l cu la t ion  are given i n  Table 4.1 along with an 

I 
example of t he  use of the  tab le .  Onsager sy-try has  no t  been appl ied 

i n  t h i s  tab le .  Hence, i t  can be used f o r  any phys ica l  property which can 

be represented as a second rank tensor .  

materials with t h e  Olivine s t r u c t u r e  are a few c r y s t a l l i n e  mater ia l s  t h a t  

have the  same poin t  group as ZnSb. 

Benzol, Ti02, CdSb, gal l ium and 

When applied t o  e l e c t r i c a l  r e s i s t i v i t y  Onsager symmetry r equ i r e s  tha t :  

where Ti i s  the  magnetic f i e l d  i n t e n s i t y  vector .  

with t h i s  addi t iona l  symmetry considerat ion,  the  e l e c t r i c a l  r e s i s t i v i t y  

may be w r i t t e n  down immediately. Assigning subsc r ip t s  according t o  the  

following t a b l e  of permutations: 

Hence, using Table 4.1 along 

k 

1 2 3 
2 3 1 

3 1 2 

- i i - 

where 1, 2, and 3 are t h e  p r i n c i p a l  d i r ec t ions  i n  the  orthorhombic c r y s t a l  

u n i t  cell,  the e l e c t r i c  f i e l d  which i s  produced by an a r b i t r a r i l y  o r i en ted  

electric cur ren t  densi ty  may be w r i t t e n  as: 

I 
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4.2 Magnetic Field Dependence of the  H a l l  Ef fec t  and Magnetoresistance 
i n  P-Type Zinc Antimonide 

4.2.1 H a l l  e f f e c t  

The H a l l  e f f e c t  has been measured i n  undoped (p 2 3 x 10l6 ~ m - ~ )  and 

copper doped (p 2 4 x 1017 cm-3 and p 2 1 x 10'' ~ m - ~ )  ZnSb a t  room temper- 

a t u r e  and a t  l i qu id  n i t rogen  temperature f o r  magnetic f i e l d s  between 250 

gauss and 12.5 kilogauss.  The measured H a l l  vol tages  were l i n e a r  i n  B,  

showing only an apparently non-systematic If: 2 percent  maximum devia t ion  

from a l i n e a r  f i e l d  dependence. These f luc tua t ions  a r e  wi th in  the  

experimental accuracy of the  measurement. 

4.2.2 Magnetoresistance 

Magnetoresistance has been measured i n  the  undoped and the  l i g h t l y  copper 

doped samples r e fe r r ed  t o  above a t  l i q u i d  n i t rogen  temperature f o r  magnetic 

f i e l d  d e n s i t i e s  between 8 and 12.5 kg. The magnetoresistance follows a 

simple B2 magnetic f i e l d  dependence wi th in  5 5 percent.  This is  wi th in  

the  experimental accuracy of the  measurement. No sys temat ic  devia t ions  

from a B dependence are observed i n  the  magnetic f i e l d  range of 8 t o  12.5 2 

kg* 

4.3 Car r i e r  P rec ip i t a t ion  i n  Undoped P-Type ZnSb Crystals 

Most of the  researchers  who have worked with s i n g l e  c r y s t a l s  of ZnSb 

have reported tha t  the  c a r r i e r  concentrat ions increase  with t i m e  when the 

c r y s t a l  is he ld  a t  e leva ted  temperatures. This observat ion w a s  f i r s t  made 

by Kot and K r e t ~ u ' ~ )  i n  1958 and is  very apparent i n  t h e i r  published data .  

This behavior was a l s o  not iced  by R.  Mazelsky i n  1960. (4) 

i n  1964, Komiya, Masumoto and Fan,(5) have mentioned the  same observation. 

J u s t i ,  Rasch and Schneider(6) do not  repor t  t h i s  behavior ,  bu t  n e i t h e r  

do they r e p o r t  any high temperature data.  

More recent ly  

The only explanation of t h i s  observat ion w a s  advanced by Kot and Kretsu 

who s a i d  t h a t  the  c r y s t a l s  

However, they and Mazelsky 

would slowly decrease with 

This behavior of ZnSb 

w i l l  be reported.  A t  t h i s  

t h i s  process is  similar t o  

were poss ib ly  sub jec t  t o  ''thermal d issoc ia t ion" .  

r epor t  t h a t  the apparent carrier concentrat ions 

time under room temperature s torage .  

has been observed and some prel iminary r e s u l t s  

t i m e  i t  seems reasonable t o  hypothesize t h a t  

the  p r e c i p i t a t i o n  of Te  i n  PbTe c r y s t a l s  which 
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(7)  has been reported by Scanlon. 

Our experiments a r e  conducted by annealing Hal l  samples of s i n g l e  

c r y s t a l  ZnSb i n  an open tube furnace. The ambient atmosphere is  e i t h e r  

n i t rogen  o r  argon with a flow r a t e  of about one s.c.f.h. 

are no t  dependent on which gas i s  used. Annealing temperatures have been 

var ied  between 65 and 24OoC and i t  has been found t h a t  an equi l ibr ium 

condi t ion i s  apparent ly  reached i n  seve ra l  hours of anneal ing time. 

The results 

Most of the  da t a  has been taken on samples t h a t  are annealed with the  

electrical contac ts  i n  place.  The e l e c t r i c a l  contacts  are copper wires 

so ldered  with 50-50 lead-t in  so lder  using Rosin f lux.  A t yp ica l  experi- 

mental run cons i s t s  of measuring the room temperature H a l l  e f f e c t  and 

r e s i s t i v i t y  of the  sample, demounting from the  sample holder ,  washing the  

sample i n  t r i ch lo re thy lene ,  acetone and methyl a l cho l ,  annealing, a i r  

quenching t o  room temperature, remounting i n  the  sample holder ,  and 

monitoring the  H a l l  e f f e c t  and r e s i s t i v i t y  as a func t ion  of t i m e .  The f i r s t  

e l e c t r i c a l  measurements are taken wi th in  1 / 3  t o  1 hour of the  moment when 

the  temperature drops t o  end the  annealing cycle ,  

A t  the  present  time, two samples have been annealed without the  

e l e c t r i c a l  contac ts  i n  place.  These samples were provided with s i d e a r m  

t o  which the  vol tage contacts  were at tached.  

samples are simple rec tangular  paral le lepipeds The sidearm samples were 

subjec ted  t o  the  same experimental procedure already out l ined  except t h a t  

a l l  t r a c e s  of lead-t in  s o l d e r  contact material were removed by sandblas t ing  

before  an annealing cycle took place,  

The usual  galvanomagnetic 

The apparent ho le  Concentration was obtained by simply i n v e r t i n g  the  

measured Hal l  coe f f i c i en t ,  The observed c a r r i e r  concentrat ions are 
p l o t t e d  as a funct ion of rec iproca l  annealing temperature i n  Fig. 4.1. 

Good s t r a i g h t  l i n e s  a r e  obtained. The s lopes  correspond t o  an apparent 

a c t i v a t i o n  energy of 1.0 ev. 

l i e  

t h e  contacts  i n  place.  

s t r u c t u r a l  defec ts  i n  the  contac t less  samples, an is t ropy  i n  the  H a l l  

c o e f f i c i e n t ,  o r  the  d i f fe rences  i n  gross geometry between the  sidearm 

sample and the  samples which had small a r ea  contac ts  soldered d i r e c t l y  

t o  t h e i r  sur faces .  

The po in t s  obtained f o r  the  con tac t l e s s  samples 

below t h e  po in ts  which are  obtained f o r  t h e  samples annealed with 

This could r e s u l t  from contac t  d i f fus ion ,  gross 

Present  experimental evidence ind ica t e s  t h a t  t h i s  
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'1 - CRYSTAL C-1109-A = SAMPLE 1 
2 - CRYSTAL C-1109-A = SAMPLE 2 
3 - CRYSTAL C-1109-A = SAMPLE 3 
4 - CRYSTAL C-1109-A = SAMPLE 4 

- CRYSTAL C-1081-C = SAMPLE 6-2 
A 1 - CRYSTAL C-1076-A = SAMPLE 2 
a 2 - CRYSTAL C-1076-A = SAMPLE 1 

Electrical contacts in  place 
on a l l  of the above samples 
during annealing. 

x - CRYSTAL C-1068-B= SAMPLE 1 
No contacts in place 
during annmling 

SLOPE = 1.0 e.v. 

( TE M PERATU RE 1 - 1  - ( O K ) - '  

Fig. 4.1 Carrier Concentration VS. Reciprocal Annealing 
Temperature - p type ZnSb 
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discrepancy mainly results from the d i f fe rence  i n  geometry between the  s ide-  

arm and the small a rea  contac t  samples. 

Af te r  annealing the  apparent hole concentrat ion decreases with t i m e .  

This recovery has been monitored as seve ra l  samples. A t y p i c a l  r e s u l t  is  

p l o t t e d  as Fig. 4.2. The i n i t i a l  s lope of the  recovery curves i n d i c a t e  an 
i n i t i a l  t213 t i m e  dependence. A t  large times, the  curves seem t o  approach 

a (l-e-t) behavior. 

A t e n t a t i v e  explanat ion of what may be happening can be b r i e f l y  s t a t e d .  

This model i s  e s s e n t i a l l y  the same as t h a t  advanced f o r  the  similar behavior 

of p-type lead t e l l u r i d e .  (7) 

This model states t h a t  Fig. 4.1 is e s s e n t i a l l y  a representa t ion  of t he  ZnSb 

re t rograde  so l idus  l i n e  on theZn43 phase diagram. The ZnSb la t t ice  can be 

thought of as containing more antimony a t  the  higher  temperature. Of course,  

i t  is  uncertain whether excess antimony o r  z inc  i s  incorporated i n t o  the  

l a t t i c e  a t  higher  temperatures. The na ture  of the  e l e c t r i c a l l y  a c t i v e  poin t  

defec t  i n  the  l a t t i ce  i s  a l s o  open t o  speculat ion.  A t  any rate, a t  h ighe r  

temperatures,  i t  i s  poss ib le  tha t  add i t iona l  antimony i s  suppl ied  by 

c r y s t a l  d i s loca t ions  which act as a source o r  a s ink  f o r  antimony depending 

upon the  annealing temperature involved and the  exact  shape of the  retro- 

grade s o l u b i l i t y  l i n e .  

Hence when a c r y s t a l  is annealed a t  an e leva ted  temperature,  a new 

concentrat ion of e l e c t r i c a l l y  ac t ive  antimony (or  z inc)  i s  incorporated 

i n t o  the  la t t ice  and the  hole concentrat ion increases .  This new equi l ibr ium 

i s  reached i n  a f a i r l y  s h o r t  time - seve ra l  hours. Afterwards, when the  

c r y s t a l  is allowed t o  remain a t  room temperature, the  antimony (o r  z inc)  

p r e c i p i t a t e s  out  on d i s loca t ion  l i n e s  i n  the  c r y s t a l  as e l e c t r i c a l l y  

n e u t r a l  atoms. This room temperature p r e c i p i t a t i o n  process i s  slow. tak ing  

hundreds o r  thousands of hours. 

a s s i s t e d  p rec ip i t a t ion .  

i n i t i a l  por t ion  of the  p rec ip i t a t ion  curve and a long time l i m i t i n g  

behavior of (l-e-t). Apparently, these  t i m e  functions are being observed 

here .  

Ham(8) has  presented a theory f o r  d i f fus ion  

The theory p r e d i c t s  a s lope  of t213 f o r  the  

Once again,  i t  i s  emphasized t h a t  the  i n t e r p r e t a t i o n  of these  physical  

measurements is  s t i l l  under consideration. The given model seems t o  be the 

most reasonable one a t  the  present t i m e .  It seems apparent t h a t  t h i s  
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phenomena can have a profound inf luence on the  r e s u l t s  of e l e c t r i c a l  measure- 

ments o r  ZnSb - espec ia l ly  on undoped c r y s t a l s .  For example, c r y s t a l s  are 
usual ly  cycled down t o  room temperature i n  a matter of hours a f t e r  growth. 

But, the  hole  concentrat ions i n  a newly grown c r y s t a l  may take weeks o r  

months t o  e q u i l i b r a t e  a t  room temperature. This complicates the determination 

of t he  anisotropy of the  galvanomagnetic p rope r t i e s  of ZnSb. 

4.4 H a l l  Mobili ty as a Function of Temperature i n  p-type ZnSb 

4.4.1 Undoped samples p 3 x 10l6 cm-3 

Measurements of the  e l e c t r i c a l  conduct ivi ty  and H a l l  e f f e c t  have been 

made between l i q u i d  n i t rogen  temperature and room temperature. 

i n g  Hal l  mob i l i t i e s  are p l o t t e d  i n  Fig. 4.3. This da t a  i s  similar t o  t h a t  

presented by Komiya, Masumoto and Fan,") except t h a t  t he  s lopes of t he  

s t r a i g h t  l i n e s  are about 10 percent lower and the  H a l l  mob i l i t i e s  are about 

20 percent h igher  than i n  t h e i r  mater ia l .  

the Czochralski technique. 

4.4.2 Copper doped samples p % 4 x 10 c m  

The r e su l t -  

Their c r y s t a l s  were grown by 

1 7  -3 

Copper i s  being used as an acceptor impurity i n  ZnSb. Copper i s  added 

t o  the  molten zone i n  the  hor izonta l  zone r e c r y s t a l l i z a t i o n  process and i s  

incorporated i n t o  the  c r y s t a l  during i t s  growth. There i s  some evidence 

t h a t  copper has h igher  s o l u b i l i t y  limits than s i l v e r  o r  gold i n  ZnSb. 

Measurements have been completed on a copper doped c r y s t a l  with a c a r r i e r  

concentrat ion of about 4 x 1017 

Fig. 4.4. Evidently,  a considerable amount of impurity s c a t t e r i n g  is  present  

nea r  l i q u i d  n i t rogen  temperatures. These measurements are being extended 

t o  more heavi ly  copper doped samples. 

(9) 

The Hall mob i l i t i e s  are shown i n  

4.4.3 Anisotropy of t he  e l e c t r i c a l  conduct ivi ty  

The above r e s u l t s  may be used t o  give a good ind ica t ion  of the  degree 

of anisotropy of the  e l e c t r i c a l  conduct ivi ty  of ZnSb. Resul ts  are a l s o  

taken from Fig. 2 of the  recent  paper by Komiya, Masumoto, and Fan. 

Table 4.2 provides a summary of the anisotropy. The r e s u l t s  are f a i r l y  

cons i s t en t  and i n d i c a t e  t h a t  a 

( 5 )  

= 1.5 aa  = 3 ab a t  O°C. 
C 
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TABLE 4.2 

ANISOTROPY I N  THE ELECTRICAL CONDUCTIVITY 
OF P-TYPE ZnSb AT O°C 

16 -3 Crys ta l  C-1081-C Undoped p = 3 x 10 cm 
cm2 

volt-sec. Rat io  of Hall Mobi l i t i es  i n  

I - =  330 0.62 - % 
'a 5 30 

% 8 20 - = - = 1.55 5 30 pa 

Komiya, Hasumoto and Fan(5) Undoped Crys ta l  
9 

Ratio of IIall  Mobi l i t i es  i n  cm" 
volt-sec. 

180 
400 = - = 0.45 - % 

"a 
'C 620 - = - * 1.55 400 'a 

Crys ta l  C-1078-C Copper Doped p 3 4 x l O I 7  cm-3 

Rat io  of E l e c t r i c a l  Conduct ivi t ies  i n  (ohm-cm)-' 

b 21.5 - = - - 0.60 
U 35.6 a 

U 55 Q 
C - = - = 1.55 

U 35.6 a 

19 -3 Crys ta l  C-1075-B Copper Doped p = 1.1 x 10 c m  

Ratio of Electrical Conduct ivi t ies  i n  (ohm-cm)-l 

370 = 0.60 b 

a 

Q 
- 0 -  

U 614 

U 
= - a  950 1.55 C - 

U 614 a 
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4.5 Magne tores  i s  tance i n  P-Type ZnSb 

Magnetoresistance data  are presented i n  Figs.  4.5 and 4.6 f o r  two p- 

type z inc  antimonide c r y s t a l s .  

of ind iv idua l  da t a  poin ts ,  brackets  have been drawn t h a t  represent  the  

t o t a l  excursion f o r  a l l  of the  da ta  po in t s  t h a t  correspond t o  a given 

angle  between the  magnetic f i e l d  and cur ren t  a x i s  of the  sample. 

Instead of p l o t t i n g  a very l a rge  number 

The s c a t t e r  of the  ind iv idua l  data  poin ts  wi th in  a given bracket  seem 

t o  bea r  no c o r r e l a t i o n  t o  magnetic f i e l d  s t rength .  Hence, i t  must be 

concluded t h a t  the  observed magnetoresistance i s  quadra t i c  i n  magnetic 

f i e l d  s t rength .  

from the f a c t  t h a t  the  magnetoresistance e f f e c t  is  so small i n  ZnSb. For 

ins tance ,  a t  77.3'K i n  a 12.5 kg magnetic f i e l d ,  the  l a r g e s t  observed 

changes i n  r e s i s t ance  a r e  1.5 percent and 0.3 percent  f o r  the  undoped and 

copper doped samples, respect ively.  A t  12.5 kg, the  e l e c t r i c  f i e l d  component 

which gives rise t o  the  H a l l  voltage i s  roughly two orders  of magnitude 

l a r g e r  than the  change i n  the  longi tudinal  component of the  e l e c t r i c  f i e l d  

which is  caused by the  magnetoresistance. As a r e s u l t ,  the  s l i g h t e s t  

departures  from i d e a l  galvanomagnetic sample geometry w i l l  in t roduce a 

spurious Hal l  vol tage component i n t o  the  vol tage measured a t  t h e  magneto- 

r e s i s t a n c e  probes. I n  p rac t i ce ,  the measured magnetoresistance vol tage 

contains  roughly an equal  amount of spurious H a l l  vol tage a t  12.5 kg. By 

s u i t a b l y  averaging vol tages  measured f o r  both d i r ec t ions  of t he  magnetic 

f i e l d ,  the a c t u a l  magnetoresistance vol tage can be obtained. However, 

e spec ia l ly  below 10 kg, t h i s  procedure can amount t o  tak ing  the  d i f f e rence  

of two l a rge  numbers and can possibly introduce considerable  e r r o r  i n t o  

the  magnetoresistance r e s u l t s .  The absolute  accuracy of the  magneto- 

r e s i s t a n c e  measurement, A ~ / P B  , i s  es t imated t o  be between 5 percent  and 

10 percent ,  depending upon the numerical magnitudes involved. The da ta  

s c a t t e r  ind ica ted  by the  s i z e  of the bracke ts  i n  Figs.  4.5 and 4.6 are 

general ly  i n  agreement with t h i s  es t imate .  

The s c a t t e r  of the ind iv idua l  d a t a  poin ts  mainly arises 

2 

Data taken with the  e l e c t r i c  cur ren t  along the  a and b axes ( the  

<loo> and ~0102 d i rec t ions )  i s  reproducible t o  wi th in  a t  least 10 percent  

between d i f f e r e n t  samples cut  from c r y s t a l  C-1078-C (copper doped). This 

i s  reasonable r ep roduc ib i l i t y  when sample c u t t i n g  and mounting misorien- 

t a t i o n  e r r o r s  are added t o  the above e r r o r  es t imate .  Data f o r  cur ren t  
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along the c axis of the copper doped crystal have no t  been reproduced as 

ye t .  Hence, the c ax i s  ( the  <001> cu r ren t  d i r e c t i o n )  r e s u l t s  should be  

regarded as t e n t a t i v e  . 
The da ta  which i s  presented ind ica t e s  a longi tudina l  magnetoresistance 

e f f e c t  which i s  so small t h a t  i t  is  reasonable t o  regard i t  as being 

r e s idua l .  The observed longi tudina l  e f f e c t  probably arises from l o c a l  

departures  from sample uniformity. These nonuniformit ies  are p r i n c i p a l l y  

l o c a l  c r y s t a l l i n e  imperfections and the  f i n i t e  s i z e  of t he  vol tage contac ts  

on the  samples. S imi la r  amounts of r e s idua l  longi tudina l  magnetoresistance 

appear i n  published d a t a  f o r  n-type GaAs (lo) and n-type S i .  (11) 

The approximately zero longi tudina l  magnetoresistance f o r  electric 

cur ren ts  d i r ec t ed  along each of  the  p r i n c i p a l  c r y s t a l  axes ind ica t e s  t h a t  

the energy sur faces  of  p-type ZnSb might be charac te r ized  by one o r  more 

general  e l l i p s o i d s  which are o r i en ted  wi th  t h e i r  p r i n c i p a l  axes p a r a l l e l  

t o  t he  edges of t he  orthorhombic Br i l l ou in  zone. 

Numerical eva lua t ion  of the  magnetoresistance d a t a  w i l l  begin as soon 

as experimental  checks of the  r ep roduc ib i l i t y  of t he  da t a  are complete. 

4.6 Thermal Measurements on P-Type ZnSb 

Measurements of thermoelec t r ic  power and thermal conduct ivi ty  as a 

funct ion of e l e c t r i c a l  conduct ivi ty  are now i n  progress .  Measurements are 
being made on samples which are cu t  from s i n g l e  c r y s t a l s  t h a t  have s i x  

d i f f e r e n t  carrier concentrations.  

The thermal conduct ivi ty ,  thermoelec t r ic  power, and e lectr ical  con- 

d u c t i v i t y  are being measured simultaneously i n  the  apparatus  which i s  shown 

i n  Figs .  4.7 and 4.8. The samples are approximately cube-shaped and measure 

3 t o  5 mm on a s ide.  The cubes are cut  so t h a t  they are bounded by the  3 

p r i n c i p a l  c r y s t a l  planes.  

I n  o rde r  t o  minimize mechanical s t r a i n s  due t o  d i f f e r e n t i a l  thermal 

expansion between any two p r i n c i p a l  axes and the  copper h e a t  source o r  s i n k ,  

a low temperature so lde r ing  technique i s  needed. Two oppos i te  faces  of 

the  sample  are ca re fu l ly  e l e c t r o p l a t e d  with indium i n  a room temperature 

ba th  jf indium sulfamate so lu t ion .  The copper h e a t  source and s ink  are 

pre t inned  with gallium. 

pe ra tu re  ( t o  about 30OC) and the  indium p la t ed  faces  are t inned  with 

The sample i s  r a i s e d  t o  s l i g h t l y  above room tem- 
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gallium. 

copper chamber cooled t o  below room temperature ( t o  about 10 o r  15'C) where 

the  gall ium so lde r  f reezes .  

then placed i n  the  vacuum c r y s t a l  and evacuated. All measurements are made 

a t  O°C w i t h  the  c ryos t a t  i m r s e d  i n  an ice bath.  

The sample is  then at tached t o  the hea t  source and s i n k  and the  

The copper thermal conduct ivi ty  chamber is 

Using t h i s  technique, i t  has been poss ib le  t o  make successive thermal 

measurements along the  th ree  p r inc ipa l  axes of the  same s i n g l e  crystal 

cube. 

same cube without f r a c t u r i n g  i t  i s  about 90 percent .  

The empir ical  p robab i l i t y  of tak ing  3 sets of measurements on the  

Some preliminary r e s u l t s  of the thermal measurements are shown i n  Table 

4.3. This da t a  ind ica t e s  t h a t  there  is  about a 20 percent  anisotropy i n  the  

thermal conduct ivi ty  and no anisotropy i n  the  thermoelec t r ic  power of p- 

type ZnSb. 
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